Thực hiện phép tính:
1) \(A=\dfrac{1}{\left(a-b\right)\left(a-c\right)}+\dfrac{1}{\left(b-a\right)\left(b-c\right)}+\dfrac{1}{\left(c-a\right)\left(c-b\right)}\)
2) \(B=\dfrac{1}{a\left(a-b\right)\left(a-c\right)}+\dfrac{1}{b\left(b-a\right)\left(b-c\right)}+\dfrac{1}{c\left(c-a\right)\left(c-b\right)}\)
3, \(C=\dfrac{bc}{\left(a-b\right)\left(a-c\right)}+\dfrac{ac}{\left(b-a\right)\left(b-c\right)}+\dfrac{ab}{\left(c-a\right)\left(c-b\right)}\)
4) \(D=\dfrac{a^2}{\left(a-b\right)\left(a-c\right)}+\dfrac{b^2}{\left(b-a\right)\left(b-c\right)}+\dfrac{c^2}{\left(c-a\right)\left(c-b\right)}\)
Chứng minh BĐT: \(\left(a^2+\dfrac{1}{a^2}\right)\left(b^2+\dfrac{1}{b^2}\right)\left(c^2+\dfrac{1}{c^2}\right)\ge8\forall a,b,c\ne0\)
CHo 3 số thực a,b,c thỏa mãn \(\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{3}{c}=3\). chứng minh rằng\(\dfrac{27a^2}{c\left(c^2+9a^2\right)}+\dfrac{b^2}{a\left(4a^2+b^2\right)}+\dfrac{8c^2b}{b\left(9b^2+4c^2\right)}\ge\dfrac{3}{2}\)
Cho 3 số thực a,b,c thỏa mãn \(\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{3}{c}=3\).Chứng minh rằng
\(\dfrac{27a^2}{c\left(c^2+9a^2\right)}+\dfrac{b^2}{a\left(4a^2+b^2\right)}+\dfrac{8c^2}{b\left(9b^2+4c^2\right)}\ge\dfrac{3}{2}\)
a) Cho ab + bc + ac = 1. Tính: \(A=\dfrac{\left(a+b\right)^2\left(b+c\right)^2\left(a+c\right)^2}{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}\)
b) Cho \(\left\{{}\begin{matrix}x+y=a+b\\x^2+y^2=a^2+b^2\end{matrix}\right.\)
C/m với mọi số nguyên dương n, ta có: \(x^n+y^n=a^n+b^n\)
Cho ba số a,b,c thỏa mãn điều kiện abc=2013. Tính giá trị biểu thức :
\(P=\dfrac{2013a^2bc}{ab+2013a+2013}+\dfrac{ab^2c}{bc+b+2013}+\dfrac{abc^2}{ac+c+1}\)
Bài 1: Cho biểu thức
\(P=\left[\dfrac{2}{\left(x+1\right)^3}\left(\dfrac{1}{x}+1\right)+\dfrac{1}{x^2+2x+1}\left(\dfrac{1}{x^2}+1\right)\right]:\dfrac{x-1}{2x^3}\)
a, Rút gọn P
b, tìm gí trị của x để P<1
c, Tìm các giá trị nguyên của x để P có giá trị nguyên
Bài 2: a, Phân tích đa thức thành nhân tử: \(x^4+6x^3+7x^2-6x+1\)
b,Tìm x biết rằng: \(|x-1|+|x-3|=2x-1\)
c, Biết xy=41 và \(x^2y+xy^2+x+y=2016\). Hãy tính \(A=x^2+y^2-5xy\)
Bài 3: Cho hình chữ nhật ABCD có AD=6cm AB=8cm và hai đường chéo cắt nhau tại O. Qua D kẻ dường thẳng d vuông góc với DB, d cắt BC tại E
a, Chứng minh rằng: tam giác BDE đồng dạng với tam giác DCE
b, Kẻ CH vuông góc với DE tại H. Chứng minh \(DC^2=CH.DB\)
c, Gọi K là giao điểm của OE và HC, chứng minh K là trung điểm của HC và tính tỉ số \(\dfrac{S_{EHC}}{S_{EDB}}\)
Bài 4: a, Tính giá trị nhỏ nhất của biểu thức \(A=xy\left(x-2\right)\left(y+6\right)+12x^2-24x+3y^2+18y+2047\)
b, Cho hình thoi ABCD có góc A= 60 độ. Trên các cạnh AB, BC lần lượt lấy các điểm M,N sao cho BM+BN bằng độ dài cạnh của hình thoi. Chứng minh rằng đường trung trực của đoạn MN luôn đi qua 1 điểm cố định.
Giải các phương trình :
a) \(\dfrac{1}{2x-3}-\dfrac{3}{x\left(2x-3\right)}=\dfrac{5}{x}\)
b) \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}\)
c) \(\dfrac{x+1}{x-2}+\dfrac{x-1}{x+2}=\dfrac{2\left(x^2+2\right)}{x^2-4}\)
d) \(\left(2x+3\right)\left(\dfrac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\dfrac{3x+8}{2-7x}+1\right)\)
Bài 1: Giải các phương trình sau:
a. 7-( 2x + 4 ) = - (x+4)
b.\(\dfrac{2x}{x+1}=\dfrac{x^2-x+8}{\left(x+1\right)\left(x-4\right)}\)
c.\(\dfrac{2\left(3x+5\right)}{3}-\dfrac{x}{2}=5-\dfrac{3\left(x+1\right)}{4}\)