Sửa đề: Cho thêm a,b,c dương
Áp dụng BĐT AM-GM ta có:
\(a^2+2b^2+3c^2\ge6\sqrt[6]{a^2\cdot b^2\cdot b^2\cdot c^2\cdot c^2\cdot c^2}=6\sqrt[6]{a^2b^4c^6}\)
\(\Rightarrow3abc\ge6\sqrt[6]{a^2b^4c^6}\Leftrightarrow abc\ge2\sqrt[6]{a^2b^4c^6}\)
\(\Leftrightarrow a^6b^6c^6\ge64a^2b^4c^6\Leftrightarrow a^4b^2\ge64\Leftrightarrow a^2b\ge8\)
\(\Rightarrow2\le\sqrt[3]{a\cdot a\cdot b}\le\dfrac{2a+b}{3}\Leftrightarrow2a+b\ge6\)
Khi đó ta có: \(P=2a+\dfrac{8}{a}+\dfrac{3b}{2}+\dfrac{6}{b}+c+\dfrac{4}{c}+\dfrac{2a+b}{2}\)
Áp dụng tiếp BĐT AM-GM ta có:
\(P\ge2\sqrt{2a\cdot\dfrac{8}{a}}+2\sqrt{\dfrac{3b}{2}\cdot\dfrac{6}{b}}+2\sqrt{c\cdot\dfrac{4}{c}}+\dfrac{6}{2}\left(2a+b\ge6\right)\)
\(=2\sqrt{16}+2\sqrt{9}+2\sqrt{4}+3=8+6+4+3=21\)
Đẳng thức xảy ra khi \(a=b=c=2\)