Cho a, b. c là độ dài 3 cạnh của một tam giác. Chứng minh rằng: 4b2c2 – (a2 + b2 + c2) > 0
Cho 3 số dương a,b,c.CMR: bc^2/a+ca^2/b+ab^2/c>=ab+bc+ca
cho 3 số dương a,b,c thỏa mãn ab+bc+ca=3.Chứng minh rằng :(a+b)(b+c)(c+a)>=8
a, Chứng minh bất đẳng thức a2+b2+2 ≥ 2(a+b)
b,Cho hai số thực x,y thỏa mãn điều kiện: x^2+y^2 = 1. Tìm GTLN và GTNN của x+y
c, Cho a,b > 0 và a+b = 1. Tìm GTNN của S=\(\dfrac{1}{ab}\)+1/a2+b2
Chứng minh rằng với mọi số thực dương a,b,c thì: a^3+b^3+c^3/ab(a+b)+bc(b+c)+ca(c+a) >= 1/2
CHO TAM GIÁC ABC, ĐẶT ĐỘ DÀI 3 CẠNH BC=a, CA=b, AB=c
CHO BIẾT: \(\frac{ab}{b+c}+\frac{bc}{c+a}+\frac{ca}{a+b}=\frac{ca}{b+c}+\frac{ab}{c+a}+\frac{bc}{a+b}\)
A) CM TAM GIÁC ABC CÂN
B) NẾU CHO THÊM: \(c^4+abc\left(a+b\right)=c^2\left(a^2+b^2\right)+\left(c+b\right)\left(c-b\right)bc+\left(c-a\right)\left(c+a\right)ac\) .TÍNH CÁC GÓC CỦA TAM GIÁC ABC
Cho a, b, c là các số thực dương thỏa mãn điều kiện abc=1. Chứng minh rằng:
\(\frac{ab}{a^4+b^4+ab}+\frac{bc}{b^4+c^4+bc}+\frac{ca}{c^4+a^4+ca}\)
Cho a, b, c là các số thực dương thỏa mãn a + b + c = 0. CMR:
\(\dfrac{a+bc}{b+c}+\dfrac{b+ca}{c+a}+\dfrac{c+ab}{a+b}\ge2\)
Cho a, b, c là các số thực dương. CMR:
\(\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ca}{c+3a+2b}< \frac{a+b+c}{6}\)