Cho ba số thực dương a, b, c thỏa mãn \(a+b+c=1\) và a + b > 2c. Tìm GTNN của biểu thức \(P=\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\frac{6\sqrt{5}}{25\left(a+b\right)}\)
cho 3 số thực a,b,c>0 thỏa mãn: \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=5\)
Chứng minh rằng: \(\frac{17}{4}\le\frac{a}{c}+\frac{b}{a}+\frac{c}{b}\le1+4\sqrt{2}\)
1. Giải ft
3(\(\sqrt{6-5x}-\sqrt{x+3}\) = 3x2 - x-5.
2. Cho a,b,c là các số thực dương sao cho a + b + c = 1. Chứng minh rằng :
\(\frac{a}{\left(b+c\right)^2}+\frac{b}{\left(c+a\right)^2}+\frac{c}{\left(a+b\right)^2}\ge\frac{9}{4}.\)
Cho a, b, c là các số thực dương thõa mãn : \(a^2+b^2+c^2=3\). Chứng minh rằng \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{1}{2\sqrt{2}}\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)\).
cho a,b,c >0 và a+b+c=3 . cmr :
\(\frac{a}{\sqrt{b+c+2}}+\frac{b}{\sqrt{a+c+2}}+\frac{c}{\sqrt{a+b+2}}\ge\frac{3}{5}\)
cho các số thực dương a,b,c thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=1\)
cmr \(\frac{a^2+bc}{\sqrt{2a^2\left(b+c\right)}}+\frac{b^2+ca}{\sqrt{2b^2\left(c+a\right)}}+\frac{c^2+ab}{\sqrt{2c^2\left(a+b\right)}}\ge1\)
1:Cho x;y>0:\(\frac{2}{x}+\frac{3}{y}=6\).Tìm min P=x+y
2:Cho x;y;z>0:x+y+z\(\le\)1.Chứng minh\(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge\sqrt{82}\)
3:cho a;b;c;d>0.Chứng minh\(\frac{a^2}{b^5}+\frac{b^2}{c^5}+\frac{c^2}{d^5}+\frac{d^2}{a^5}\ge\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)
4:Tìm max,min y=x+\(\sqrt{4-x^2}\)
5:Cho \(a\ge1;b\ge1\).Chứng minh \(a\sqrt{b-1}+b\sqrt{a-1}\le ab\)
6:Chứng minh:\(\left(ab+bc+ca\right)^2\ge3\text{a}bc\left(a+b+c\right)\)
Giúp e mấy bài này với ạ.
1) Cho a, b, c là các số thực không âm thỏa mãn ab + bc + ca = 1.
Chứng minh rằng: \(\frac{3ab+1}{a+b}+\frac{3bc+1}{b+c}+\frac{3ac+1}{c+a}\ge4.\)
2) Cho các số thực dương a, b, c sao cho \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\le1\)
Chứng minh rằng: \(\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)\ge125.\)
3) Cho ba số thực dương a, b, c thỏa mãn a + b + c = 3. Tìm giá trị nhỏ nhất của biểu thức
P = \(\frac{a^2+b^2}{9-ab}+\frac{b^2+c^2}{9-bc}+\frac{c^2+a^2}{9-ca}.\)
4) Cho a, b, c là các số thực dương. Chứng minh rằng: \(\sqrt{\frac{bc}{a\left(3b+a\right)}}+\sqrt{\frac{ac}{b\left(3c+b\right)}}+\sqrt{\frac{ab}{c\left(3a+c\right)}}\ge\frac{3}{2}\)
Cho các số dương a, b, c có a + b + c = 3. Tìm GTNN của bt :
P = \(\frac{a\sqrt{a}}{\sqrt{2c+a+b}}+\frac{b\sqrt{b}}{\sqrt{2a+b+c}}+\frac{c\sqrt{c}}{\sqrt{2b+c+a}}\)