Ôn tập: Phân thức đại số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tường Nguyễn Thế

Cho a, b, c là các số nguyên sao cho 2a+b; 2b+c; 2c+a là các số chính phương, biết rằng trong 3 số chính phương nói trên có một số chia hết cho 3. Chứng minh rằng: (a-b)(b-c)(c-a) chia hết cho 27.

Akai Haruma
29 tháng 12 2017 lúc 18:40

Lời giải:

Đặt \(\left\{\begin{matrix} 2a+b=x^2\\ 2b+c=y^2\\ 2c+a=z^2\end{matrix}\right.\)

\(\Rightarrow x^2+y^2+z^2=3(a+b+c)\vdots 3\)

Vì một trong 3 số chính phương kể trên chia hết cho 3 nên giả sử \(2c+a=z^2\vdots 3\)

\(\Rightarrow x^2+y^2\vdots 3\) (*)

Ta biết rằng một số chính phương khi chia 3 có dư 0 hoặc 1

Do đó Nếu \(x^2,y^2\) đều không chia hết cho 3 thì \(x^2+y^2\) chia 3 có thể có dư là 1,2 (trái với (*))

Từ đây suy ra \(x^2\vdots 3; y^2\vdots 3\).

Vậy \(x^2, y^2,z^2\vdots 3\) (1)

\(\Rightarrow x,y,z\vdots 3\) (do 3 là số nguyên tố)

\(\Rightarrow x^2, y^2,z^2\vdots 9\)

\(\Rightarrow 3(a+b+c)=x^2+y^2+z^2\vdots 9\Rightarrow a+b+c\vdots 3\) (2)

Từ (1);(2) suy ra:

\(\left\{\begin{matrix} x^2-(a+b+c)\vdots 3\\ y^2-(a+b+c)\vdots 3\\ z^2-(a+b+c)\vdots 3\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} a-c\vdots 3\\ b-a\vdots 3\\ c-b\vdots 3\end{matrix}\right.\)

\(\Rightarrow (a-c)(b-a)(c-b)\vdots 27\)

\(\Leftrightarrow (a-b)(b-c)(c-a)\vdots 27\)

Ta có đpcm.


Các câu hỏi tương tự
Đỗ Thị Phương Anh
Xem chi tiết
Lê Dương
Xem chi tiết
anh nguyen
Xem chi tiết
Thơ
Xem chi tiết
송중기
Xem chi tiết
Nghịch Dư Thủy
Xem chi tiết
Charlotte Ngân
Xem chi tiết
Sakura Sakura
Xem chi tiết
Phạm Nguyễn Linh Nhi
Xem chi tiết