Cho a,b,c là các số hữu tỉ khác 0 thỏa mãn điều kiện a=b+c
Chứng minh rằng \(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}\) là một số hữu tỉ
1.Xét 2 số thực không âm a,b thỏa mãn a+b≤6. Tìm giá trị lớn nhất của A=a2b(4-a-b)
2. Cho các số a,b,c∈R+ thỏa mãn a+b+c=3.CMR : a+ab+2abc≤\(\dfrac{9}{2}\)
3. Cho các số a,b ∈R+ phân biệt. CMR: (x+y)\(\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)+\(\dfrac{16}{\left(x-y\right)^2}\)≥12
cho a b c là các số thực thỏa mãn a,b ≥0 0≤ c ≤ 1 và a^2 +b^2 +c^2 =3
Tìm min max P= ab + bc +ca +3(a+b+c)
Cho 3 số a, b, c không âm thỏa mãn điều kiện a+b+c=2, chứng minh rằng: \(\dfrac{\sqrt{a}}{1+a}+\dfrac{\sqrt{b}}{1+a+b}+\dfrac{\sqrt{c}}{1+a+b+c}\le2\)
xét các số thực a,b,c (a≠0) sao cho phương trình ax2+bx+c=0 có 2 nghiệm m, n thỏa mãn \(0\le m\le1;0\le m\le1\). tìm GTNN của \(Q=\dfrac{2a^2-ac-2ab+bc}{a^2-ab+ac}\)
1) cho các số thực dương a,b thỏa mãn \(3a+b\le1\). Tìm Min của \(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\)
2) Với hai số thực a,b không âm thỏa mãn \(a^2+b^2=4\). Tìm Max \(M=\dfrac{ab}{a+b+2}\)
3) Cho x,y khác 0 thỏa mãn \(\left(x+y\right)xy=x^2+y^2-xy\). Tìm Max \(A=\dfrac{1}{x^3}+\dfrac{1}{y^3}\)
Cho a, b,, c, d là các số nguyên dương thỏa mãn b( a + c) = ac. Chứng minh rằng: a. b + 2( a + c) luôn là hợp số;
b. c + 2a luôn là hợp số.
Cho a, b, c là các số thực dương thỏa mãn: a+b+c+ab+bc+ac=6. Chứng minh rằng: \(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge3\)