Ta có a,b,c > 0
Áp dụng bất đẳng thức Cô-si : \(a+b\ge2\sqrt{ab}\)
và \(a+b+c\ge3\sqrt[3]{abc}\)
Ta được: Vế trái \(\ge\dfrac{2\sqrt{ab}}{c}+\dfrac{2\sqrt{bc}}{a}+2\dfrac{\sqrt{ac}}{b}\)
\(\ge3\sqrt[3]{\dfrac{2\sqrt{ab}\times2\sqrt{bc}\times2\sqrt{ac}}{abc}}\)
\(\ge3\sqrt[3]{\dfrac{8\sqrt{a^2b^2c^2}}{abc}\ge6}\) (Đpcm)
Vậy: \(\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\ge6\)
Đặt A=\(\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{a+c}{b}\)
\(=\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{b}{a}+\dfrac{a}{b}\right)+\left(\dfrac{c}{b}+\dfrac{b}{c}\right)\)
Do a,b,c dương.Áp dụng bất đăng thức côsi cho 2 số dương ta có:
\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{ab}{ba}}=2\)
\(\dfrac{b}{c}+\dfrac{c}{b}\ge2\sqrt{\dfrac{bc}{cb}}=2\)
\(\dfrac{c}{a}+\dfrac{a}{c}\ge2\sqrt{\dfrac{ca}{ac}}=2\)
Dấu "=" xảy ra khi và chỉ khi:
\(\dfrac{a}{b}=\dfrac{b}{a};\dfrac{b}{c}=\dfrac{c}{b};\dfrac{c}{a}=\dfrac{a}{c}\Leftrightarrow a=b=c\)
=> A\(\ge6\) ,dấu "=" xảy ra tại a=b=c(đpcm)
Vế trái bất đẳng thức có thể viết là:
a+bc+b+ca+c+aba+bc+b+ca+c+ab
= (ac+ca)+(bc+cb)+(ba+ab)(ac+ca)+(bc+cb)+(ba+ab)
Ta biết với a, b, c > 0: với mỗi biểu thức trong ngoặc () không nhỏ hơn 2.
Vậy a+bc+b+ca+c+ab≥6