cho a,b và c là các số thực không âm thỏa mãn a+b+c=1
Chứng minh \(\dfrac{ab}{c+1}+\dfrac{bc}{a+1}+\dfrac{ca}{b+1}\le\dfrac{1}{4}\)
a, <a/b+b/a>*<a/b+b/a2>≥4/căn ab
b, <a+1/b>*<b+1/c>*<c+1/a> ≥8
c, ab/c+bc/a+ca/b ≥ a+b+c
d, a/b2+b/c2+c/a2 ≥ 1/a +1/b+1/c
Chứng minh rằng :
\(a+b+c\le\dfrac{1}{2}\left(a^2b+b^2c+c^2a+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
với a, b, c là những số dương tùy ý
bài 1: Rút gọn:
a) A= \(sin^2x+sin^2x.cot^2x\)
b) B= \(\left(1-tan^2x\right).cot^2x+1-cot^2x\)
c) C= \(sin^2x.tanx+cos^2x.cotx+2sinx.cosx\)
d) D= \(\dfrac{1-cosx}{sin^2x}-\dfrac{1}{1+cosx}\)
e) E= \(cos^2\alpha.\left(sin^2\alpha+1\right)+sin^4\alpha\)
f) F= \(\dfrac{\sqrt{2}cos\alpha-2cos\left(\dfrac{\pi}{4}+2\right)}{-\sqrt{2}sin\alpha+2sin\left(\dfrac{\pi}{4}+2\right)}\)
g) G= \(\left(tana-tanb\right)cot\left(a-b\right)-tana.tanb\)
bài 2: cho các số dương a,b,c có a+b+c=3. Tìm giá trị nhỏ nhất của biểu thức
P= \(\dfrac{a\sqrt{a}}{\sqrt{2c+a+b}}+\dfrac{b\sqrt{b}}{\sqrt{2a+b+c}}+\dfrac{c\sqrt{c}}{\sqrt{2b+c+a}}\)
bài 3: cho a,b,c dương sao cho \(a^2+b^2+c^2=3\). Chứng minh rằng: \(\dfrac{a^3b^3}{c}+\dfrac{a^3c^3}{b}+\dfrac{b^3c^3}{a}\ge3abc\)
bài 4: cho các số thực dương a,b,c thỏa mãn a+b+c=3. Tìm giá trị nhỏ nhất cảu biểu thức :
P= \(\dfrac{1}{a}+\dfrac{1}{b}-c\)
bài 5: Cho a,b>0, \(3b+b\le1.\) Tìm giá trị nhỏ nhất của P= \(\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\)
Cho a, b, c là 3 số thực thỏa mãn điều kiện \(a^3>36\) và \(abc=1\)
Xét tam thức bậc hai : \(f\left(x\right)=x^2-ax-3bc+\dfrac{a^2}{3}\)
a) Chứng minh rằng \(f\left(x\right)>0;\forall x\)
b) Từ câu a) suy ra \(\dfrac{a^2}{3}+b^2+c^2>ab+bc+ca\)
Cho a, b, c là các số dương. Chứng minh rằng :
\(\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\ge6\)
Cho a,b,c > 0. CMR: \(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge a+b+c\).
Trong số các số bên phải của các đa thức sau, số nào là nghiệm của đa thức bên trái nó?
a) A(x)=2x-6 ; -3 0 3
b) B(x)=3x-6 ; \(\dfrac{-1}{6}\) \(\dfrac{-1}{3}\) \(\dfrac{1}{3}\) \(\dfrac{1}{6}\)
c) M(x)=x\(^2\)-3x +2 ; -2 -1 1 2
d) P(x)=x\(^2\)+5x-6 ; -6 -1 1 6
e) Q(x)=x\(^2\)+x ; -1 0 \(\dfrac{1}{2}\) 1
6. Bất đẳng thức
Bài 9: Cho a, b, c, d, e \(\in\) R. Chứng minh các bất đẳng thức sau:
a. \(a^2+b^2+c^2\ge ab+bc+ca\)
b. \(a^2+b^2+1\ge ab+a+b\)
c. \(a^2+b^2+c^2+3\ge2\left(a+b+c\right)\)
d. \(a^2+b^2+c^2\ge2\left(ab+bc-ca\right)\)
e. \(a^4+b^4+c^2+1\ge2a\left(ab^2-a+c+1\right)\)
f. \(\frac{a^2}{4}+b^2+c^2\ge ab-ac+2bc\)
g. \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)\ge6abc\)
h. \(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)
i. \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\) với a, b, c >0
k. \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\) với a, b, c \(\ge\)0