Câu hỏi của Phạm Thị Thu Trang - Toán lớp 9 - Học toán với OnlineMath
Câu hỏi của Phạm Thị Thu Trang - Toán lớp 9 - Học toán với OnlineMath
Cho ba số thực dương a; b và c thỏa mãn :\(a+b+c=3\). Tìm giá trị lớn nhất của biểu thức sau:
\(P=\sqrt{9a+16b}+\sqrt{9b+16c}+\sqrt{9c+16a}\)
cho ba số thực dương a,b,c thỏa mãn \(a^4+b^4+c^{^{ }4}=9\). tìm giá trị lớn nhất của P=ab(c+3)
Xét 3 số thực dương \(a;b;c\) thay đổi và thỏa mãn điều kiện: \(3a^2+2.\left(b^2+bc+c^2\right)=9\).
Tìm giá trị nhỏ nhất của biểu thức sau:
\(P=\sqrt{a^2+\dfrac{3}{b^2}}+\sqrt{b^2+\dfrac{3}{c^2}}+\sqrt{c^2+\dfrac{3}{a^2}}\)
P/s: Em xin phép nhờ quý thầy cô và các bạn hỗ trợ và giúp đỡ với ạ, em cám ơn rất nhiều!
Cho các số thực dương a,b,c thỏa mãn \(ac\ge12,bc\ge8\). Tìm giá trị nhỏ nhất (nếu có) của biểu thức:
\(D=a+b+c+2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)+\dfrac{8}{abc}\)
tam giác ABC có 3 cạnh a,b,c
a) a2+b2+c2< 2(ab+bc+ca)
b) abc\(\ge\)(a+b-c)(b+c-a)(c+a-b)
P= \(\sqrt{\dfrac{ab}{c+ab}}+\sqrt{\dfrac{bc}{a+bc}}\sqrt{\dfrac{ca}{b+ca}}\)
cho a,b,c là 3 số thực dương thỏa mãn a+b+c=1 . Tìm giá trị lớn nhất của biểu thức P
Bài ni hay lắm mn
Cho 3 số a , b , c thỏa mãn \(0\le a\le b\le c\le1\)
Tìm giá trị lớn nhất của biểu thức \(B=\left(a+b+c+3\right)\left(\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}\right)\)
Cho tam giác ABC. CMR:
1. Với M tùy ý thì aMA2+bMB2+cMC2≥abc
2. 2(a+b+c)(a2+b2+c2) ≥3 (a3+b3+c3+3abc)
Cho a,b,c >= 0 thỏa mãn a+b+c=1. Tìm giá trị lớn nhất của A= căn bậc ba (a+b) + căn bậc ba (b+c) + căn bậc ba (c+a)