Cho 3 số thực a,b,c dương và thỏa mãn: \(a^2+b^2+c^2=3\). Tìm GTNN của biểu thức: \(A=\dfrac{1}{\sqrt{1+8a^3}}+\dfrac{1}{\sqrt{1+8b^3}}+\dfrac{1}{\sqrt{1+8c^3}}\)
cho a,b,c>0 thỏa mãn: \(a+b+c=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}\)
chứng minh: \(3\left(a+b+c\right)\ge\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\)
Với a, b, c là những số thực dương, chứng minh rằng: \(\dfrac{a^2}{\sqrt{3a^2+8b^2+14ab}}+\dfrac{b^2}{\sqrt{3b^2+8c^2+14bc}}+\dfrac{c^2}{\sqrt{3c^2+8a^2+14ca}}\ge\dfrac{a+b+c}{5}\)
cho 3 số thực dương a,b,c thỏa mãn \(\dfrac{a}{1+a}+\dfrac{b}{1+b}+\dfrac{c}{1+c}=2\) .Chứng minh:
\(\dfrac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{2}\ge\dfrac{1}{\sqrt{a}}+\dfrac{1}{\sqrt{b}}+\dfrac{1}{\sqrt{c}}\)
cho a,b,c dương thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\). tìm GTLN của \(P=\dfrac{1}{\sqrt{a^2-ab+b^2}}+\dfrac{1}{\sqrt{b^2-bc+c^2}}+\dfrac{1}{\sqrt{c^2-ca+a^2}}\)
Cho 3 số thực dương a, b, c thoả mãn \(a+b+c\le\sqrt{3}\). Chứng minh rằng: \(\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{3}{2}\)
Cho các số thực dương a, b, c thoả mãn:
\(a\sqrt{1-b^2}+b\sqrt{1-c^2}+c\sqrt{1-a^2}=\dfrac{3}{2}\)
Cmr: \(a^2+b^2+c^2=\dfrac{3}{2}\)
Cho a, b, c>0 thỏa mãn: abc=1. CM: \(\dfrac{1}{\sqrt{ab+a+2}}+\dfrac{1}{\sqrt{bc+b+2}}+\dfrac{1}{\sqrt{ca+c+2}}\le\dfrac{3}{2}\)
cho a,b,c >0 và a+b+c=3 .chứng minh \(\dfrac{1}{\sqrt{2a^2+1}}+\dfrac{1}{\sqrt{2b^2+1}}+\dfrac{1}{\sqrt{2c^2+1}}\ge\sqrt{3}\)