Cho các số nguyên dương a,b,c,d,e,f biết :
\(\dfrac{a}{b}>\dfrac{c}{d}>\dfrac{e}{f}\) và \(af-be=1.CMR:d\ge b+f\)
Tìm số tự nhiên M nhỏ nhất có 4 chữ số thỏa mãn điều kiện :
M= a+b=c+d= e+f
Biết a,b,c,d,e,f\(_{ }^{ }\in\)N* và \(\dfrac{a}{b}=\dfrac{14}{22}\); \(\dfrac{c}{d}=\dfrac{11}{13}\);\(\dfrac{e}{f}=\dfrac{13}{17}\)
Cho các số thực a;b;c;d;e khác 0 thỏa mãn : \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}\) . Chứng minh rằng : \(\dfrac{2a^4+3b^4+4c^4+5d^4}{2b^4+3c^4+4d^4+5e^4}\)
cho các số nguyên dương a,b,c,d thỏa mãn \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{1}{d^2}=1\)Chứng minh rằng trong bốn số đã cho luôn tồn tại ít nhất hai số bằng nhau
Cho các số nguyên dương a, b, c, d thỏa mãn \(\dfrac{1}{a^2} + \dfrac{1}{b^2} +\dfrac{1}{c^2} + \dfrac{1}{d^2} = 1\)
Chứng minh rằng trong bốn số đã cho luôn tồn tại ít nhất hai số bằng nhau.
Cho 4 số nguyên dương a;b;c;d thỏa mãn điều kiện a + c = 2b và c(b + d) = bd . Chứng minh rằng : \(\left(\dfrac{a+c}{b+d}\right)^8=\dfrac{a^8+c^8}{b^8+d^8}\)
số nguyên n thỏa mãn \(\dfrac{5}{9}< \dfrac{5}{n}< \dfrac{-3}{7}\) là
A.6 B.7 C.8 D.9
a) Cho các số a, b, c thỏa mãn abc\(\ne\) 0 và \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) =\(\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{a+c}{b}\)=\(\dfrac{1}{3}\). Tính S= a + b + c + 2021.
Cho tam giác ABC có D là trung điểm của BC, trên tia đối của tia DA lấy điểm E sao cho DE=DA. Chứng minh
a/ DAB = DEC
b/ AC//BE
c/ Trên đoạn thẳng AB lấy điểm F, trên CE lấy điểm G sao cho AF=EG. Chứng minh F,D,G thẳng hàng