Áp dụng BĐT Bunhicopxki:
\(\left(1+1+1\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2=1\)
Suy ra \(a^2+b^2+c^2\ge\frac{1}{3}^{\left(đpcm\right)}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)
Áp dụng BĐT Bunhicopxki:
\(\left(1+1+1\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2=1\)
Suy ra \(a^2+b^2+c^2\ge\frac{1}{3}^{\left(đpcm\right)}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)
Chứng minh các bất đẳng thức sau bằng cách biến đổi tương đương:
a) Cho 1\(\le t\le\) 2. CMR: \(\frac{t^2}{2.t^2+3}+\frac{2}{1+t}\ge\frac{34}{33}\)
b) Chứng minh với mọi số duong a, b ta luôn có \(\frac{a^2b}{2a^3+b^3}+\frac{2}{3}\ge\frac{a^2+2ab}{2a^2+b^2}\)
Cho a,b,c >0, a+b+c=3. CMR: \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)
1. Cho a,b,c > 0. Cmr :
\(\frac{a^3}{bc}+\frac{b^3}{ca}+\frac{c^3}{ab}\ge\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)
2. Cho a,b,c > 0. Cmr :
\(\frac{a}{b+2c+3d}+\frac{b}{c+2d+3a}+\frac{c}{d+2a+3b}+\frac{d}{a+2b+3c}\ge\frac{2}{3}\)
Cho 3 số dương a,b,c thỏa mãn a+b+c=3. CMR
\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)
Cho a,b,c > 0 thỏa mãn \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{1}{2}\). CMR:
\(\frac{\sqrt{b^2+2a^2}}{ab}+\frac{\sqrt{c^2+2b^2}}{bc}+\frac{\sqrt{a^2+2c^2}}{ca}\ge\sqrt{3}\)
Cho a, b, c bất kì và a + b + c = 1. C/minh rằng \(a^2+b^2+c^2\ge\frac{1}{3}\)
cho a,b,c>0.CMR:\(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
cho a,b,c>0 . Cmr: \(\frac{a^2}{b^5}+\frac{b^2}{c^5}+\frac{c^2}{d^5}+\frac{d^2}{a^5}\ge\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)
(sử dụng AM-GM)
cho a+b+c=1. cmr \(a^2+b^2+c^2\ge\frac{1}{3}\)