Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Đình Thành

Cho a + b + c = 2018

Chứng minh rằng: \(\dfrac{a^4+b^4}{a^3+b^3}+\dfrac{b^4+c^4}{b^3+c^3}+\dfrac{c^4+a^4}{c^3+a^3}\) \(\ge2018\)

Unruly Kid
6 tháng 8 2018 lúc 7:18

Ta chứng minh: \(\dfrac{a^4+b^4}{a^3+b^3}\ge\dfrac{a+b}{2}\Leftrightarrow2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\Leftrightarrow2a^4+2b^4\ge a^4+ab^3+b^4+ba^3\)

\(\Leftrightarrow a^4+b^4\ge ab^3+ba^3\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)Bất đẳng thức cuối luôn đúng nên ta có điều phải chứng minh. Áp dụng vào bài, ta có:

\(\dfrac{a^4+b^4}{a^3+b^3}+\dfrac{b^4+c^4}{b^3+c^3}+\dfrac{c^4+a^4}{c^3+a^3}\ge\dfrac{a+b}{2}+\dfrac{b+c}{2}+\dfrac{c+a}{2}=2018\)


Các câu hỏi tương tự
haiz aneu
Xem chi tiết
DRACULA
Xem chi tiết
Toankhowatroi
Xem chi tiết
Nguyễn Thế Hiếu
Xem chi tiết
Văn Quyết
Xem chi tiết
Lâm Tố Như
Xem chi tiết
Văn Quyết
Xem chi tiết
Văn Quyết
Xem chi tiết
yeens
Xem chi tiết