Chương I: VÉC TƠ

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ha My

Cho A(-1;4) , B(1;-2) , C(3;4)

6,Tìm E Ox sao cho A,B,E thẳng hàng

7, Tìm FOy sao cho B,C,F thẳng hàng

8, Tìm N sao cho tứ giác ABCN là hình bình hành ( theo 2 cách )

9, Tìm I sao cho \(\overrightarrow{IA}+2\overrightarrow{IB}=\overrightarrow{0}\)

10, Tìm J sao cho \(\overrightarrow{JA}+2\overrightarrow{JB}-4\overrightarrow{JC}=\overrightarrow{0}\)

Aki Tsuki
17 tháng 10 2019 lúc 22:06

8/ Giả sử N(xN;yN)

Cách 1:\(\overrightarrow{BA}=\left(-2;6\right);\overrightarrow{CN}=\left(x_N-3;y_n-4\right)\)

vì tứ giác ABCN là hbh

=> \(\overrightarrow{BA}=\overrightarrow{CN}\Rightarrow\left\{{}\begin{matrix}x_N-3=-2\\y_N-4=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_N=1\\y_N=10\end{matrix}\right.\)

=> N(1;10)

Cách 2:

\(\overrightarrow{AN}=\left(x_N+1;y_N-4\right);\overrightarrow{BC}=\left(2;6\right)\)

ABCN là hbh => \(\overrightarrow{AN}=\overrightarrow{BC}\)

\(\Rightarrow\left\{{}\begin{matrix}x_N+1=2\\y_N-4=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_N=1\\y_N=10\end{matrix}\right.\)

vậy....

9/ giả sử I(xI;yI)

\(\overrightarrow{IA}=\left(-1-x_I;4-y_I\right)\)

\(\overrightarrow{IB}=\left(1-x_I;-2-y_I\right)\Rightarrow2\overrightarrow{IB}=\left(2-2x_I;-4-2y_I\right)\)

\(\overrightarrow{IA}+2\overrightarrow{IB}=\overrightarrow{0}\)

=> \(\left\{{}\begin{matrix}-1-x_I+2-2x_I=0\\4-y_I-4-2y_I=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_I=\frac{1}{3}\\y_I=0\end{matrix}\right.\)

vậy.......

10/ xác đinh vt JA;vt 2JB; vt -4JC rồi thay vào

Aki Tsuki
17 tháng 10 2019 lúc 21:33

6/

Giả sử: E(xE;0) (E thuộc Ox)

A,B,E thẳng hàng => tồn tại số thực k(k khác 0) để \(\overrightarrow{AE}=k\cdot\overrightarrow{AB}\)

Ta có: \(\overrightarrow{AE}=\left(x_E+1;-4\right)\)

\(\overrightarrow{AB}=\left(2;-6\right)\Rightarrow k\cdot\overrightarrow{AB}=\left(2k;-6k\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x_E+1=2k\\-4=-6k\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{3}\\k=\frac{2}{3}\end{matrix}\right.\)

Vậy E(\(\frac{1}{3};0\)) thoả mãn \(\overrightarrow{AE}=\frac{2}{3}\overrightarrow{AB}\) để 3 điểm A,B,E thẳng hàng

7/ F thuộc Oy, giải sử F(0;yF)

làm tương tự (6)


Các câu hỏi tương tự
Ha My
Xem chi tiết
Emilia Nguyen
Xem chi tiết
Tuyết Phạm
Xem chi tiết
Ha My
Xem chi tiết
tran duc huy
Xem chi tiết
Lê Nhung
Xem chi tiết
Julian Edward
Xem chi tiết
Thiên Yết
Xem chi tiết
Đinh Sơn Đông
Xem chi tiết