cho tan α=3/2 khi đó cot α nhân kết quả là
A1,5 B 2 C2/3 D đều sai
Cho (O;3cm) và một điểm M sao cho OM = 5cm. Từ M kẻ tiếp tuyến MA với (O)
a. Tính AM và giá trị sin\(\widehat{AMO}\)
b. Qua A vẽ đường thẳng vuông góc với OM tại H, cắt (O) tại B (B\(\ne\) A). C/m MB là tiếp tuyến (O)
c. Kẻ đường kính AC của (O), đường thẳng MC cắt đường tròn tại điểm thứ 2 là D. C/m \(\widehat{MHD}\) = \(\widehat{OCD}\)
Cho \(\text{A(0; 5), B(-3; 0), C(1; 1), M(-4,5; -2,5).}\)
a) CMR: ba điểm A, B, M thẳng hàng và ba điểm A, B, C không thẳng hàng.
b) Tính diện tích tam giác ABC.
Cho biểu thức P= (\(\dfrac{2}{\sqrt{1+a}}\)+ \(\sqrt{1-â}\)) : (\(\dfrac{2}{\sqrt{1-a^2}}\) +1)
a, rút gọn p
b, tính p khi a = 24/49
c, tính a để p=2
P = \(\dfrac{\sqrt{a}-1}{3\sqrt{a}+\left(\sqrt{a}-1\right)^2}-\dfrac{6-2\left(\sqrt{a}-1\right)^2}{a\sqrt{a}-1}+\dfrac{2}{\sqrt{a}-1}\)
Rút gon P
Tìm x để P=1
Tính P tại x=\(7-2\sqrt{6}\)
Trên mặt phẳng toạ độ, cho hình vuông ABCD. Biết điểm A(1; 3) và các điểm B, D nằm trên đường thẳng y = 2x + 6 a) Tim hàm số bậc nhất có đồ thị là đường thẳng đi qua hai điểm A và C. b) Tính diện tích hình vuông ABCD.
a) Tính giá trị của biểu thức: A=\(\dfrac{\sqrt{\dfrac{5}{2}-\sqrt{6}}+\sqrt{\dfrac{5}{2}+\sqrt{6}}}{\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}}\)
b) Cho biểu thức B=\(\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right)\times\left(\dfrac{x\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{\sqrt{x}+x}{\sqrt{x}+1}\right)\)(với x≥0;x≠1)
Rút gọn B rồi tìm điều kiện của x để B<0
Cho △ABC vuông tại A có BC = 5, AB = 2AC
A. Tính AC
b. Vẽ đường cao AD, trên tia đối AH lấy điểm I sao cho AI = \(\dfrac{1}{3}\)AH. Kẻ Cy // AH. Gọi A là giao điểm của BI và Cy. Tính \(S_{AHCD}\)
c. Vẽ (B; AB) và (C; AC) cắt nhau tại E. C/m CE là tiếp tuyến (B)
1. Cho hàm số bậc nhất y=ax+1. Đồ thị hàm số đi qua điểm A(2;3) khi:
A, a=1 B, a=2 C, a=3 D, a=0