Cho A = \(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\)
CMR: A ko là số tự nhiên
Bài 1: Cho a là số gồm 2n chữ số 1, b là số gồm n +1 chữ số 1, c là số gồm n chữ số 6. Chứng minh rằng a + b + c + 8 là số chính phương.
Bài 2: Chứng minh rằng với mọi số tự nhiên a, tồn tại số tự nhiên b sao cho ab + 4 là số chính phương.
bài 3: Cho hai số tự nhiên a và b (với điều kiện a < b). Tìm tổng các phân số tối giản có mẫu bằng 7, mỗi phân số lớn hơn a nhưng nhỏ hơn b.
Bài 4: Tìm n biết rằng n3 - n2 + 2n + 7 chia hết cho n2 + 1.
Bài 5: Tìm số tự nhiên n để 1n + 2n + 3n + 4n chia hết cho 5
a) Tính tổng : 1+ 2 + 3 +…. + n , 1+ 3 + 5 +…. + (2n -1)
b) Tính tổng : 1.2 + 2.3 + 3.4 + …..+ n.(n+1) 1.2.3+ 2.3.4 + 3.4.5 + ….+ n(n+1)(n+2)
Với n là số tự nhiên khác 0.
Các thánh giúp em zới ko hỉu gì hết trơn T-T
Bài 1: CMR từ 102 số tự nhiên bất kì luôn có thể tồn tại 2 số có tổng hoặc hiệu chia hết cho 200.
Bài 2: CMR từ 10 số tự nhiên bất kì (a1, a2, a3, ... , a10) thì luôn tồn tại 4 số có tổng chia hết cho 4.
Bài 3: CMR từ 13 số tự nhiên bất kì luôn tồn tại 4 số có tổng chia hết cho 4.
Bài 1: CMR từ 102 số tự nhiên bất kì luôn có thể tồn tại 2 số có tổng hoặc hiệu chia hết cho 200.
Bài 2: CMR từ 10 số tự nhiên bất kì (a1, a2, a3, ... , a10) thì luôn tồn tại 4 số có tổng chia hết cho 4.
Bài 3: CMR từ 13 số tự nhiên bất kì luôn tồn tại 4 số có tổng chia hết cho 4.
Số tự nhiên a nhỏ nhất sao khi chia a cho 3/5 và khi chia a cho 1 3/7 ta đều được kết quá là số tự nhiên. Vậy số tự nhiên a là số mấy?
CMR:
a) \(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}< 1\)
b) \(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}< 2\)
Cho m là một số tự nhiên lớn hơn 3 , m ko chia hết cho 3 .CMR : m^2-1 chia hết cho 24
cho bieu thuc a=-1/3+1/3^2-1/3^3+1/3^4-1/3^5+...+1/3^100 tinh gia tri cua bieu thuc b=4/a/+1/3^100