Cho A = \(\frac{3}{4}+\left(\frac{3}{4}\right)^2+\left(\frac{3}{4}\right)^3+\left(\frac{3}{4}\right)^4+...+\left(\frac{3}{4}\right)^{2000}\)
Cmr: A không phải là số nguyên
1, Tính
\(A=\left(-3+\frac{3}{4}-\frac{1}{3}\right):\left(5+\frac{2}{5}-\frac{2}{3}\right)\)
\(B=\left(\frac{3}{5}-\frac{4}{15}\right).\left(\frac{2}{7}-\frac{3}{14}\right)-\left(\frac{5}{9}-\frac{7}{27}\right).\left(1-\frac{3}{5}\right)+\left(1-\frac{11}{12}\right).\left(1+\frac{11}{12}\right)\)
Tim x biet :
\(a,\frac{x-1}{2009}+\frac{x-2}{2008}=\frac{x-3}{2007}+\frac{x-4}{2006}\)
\(b,\left|x-1\right|+\left|x-2\right|+\left|x-3\right|=4\left(x-4\right)\)
1.Tính:
\(a,A=\sqrt{12\frac{1}{4}}.\left(\frac{-2}{7}\right)^2-\left[2,\left(4\right).2\frac{5}{11}\right]:\left(\frac{-42}{5}\right)\)
\(B=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{2016}{3^{2016}}\)
2. Tìm x,y,z biết:
a) \(\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|-6x=0\)
b) \(\sqrt{\left(x+\sqrt{5}\right)^2}+\sqrt{\left(y+\sqrt{3}\right)^2}+\left|x-y-z\right|=0\)
c) \(\frac{x-2}{2}=\frac{y-3}{3}=\frac{z-3}{4}\) và x-2y+3z=14.
d) \(5^x+5^{x+1}+5^{x+2}=3875\).
3. a) Cho bốn số a,b,c,d>0 thỏa mãn: \(\frac{1}{c}=\frac{ }{1}2.\left(\frac{1}{b}+\frac{1}{a}\right)\)và b là trung bình cộng của a và c. Chứng minh rằng bốn số đó lập nên một tỉ lệ thức.
b) Cho tỉ lệ thức: \(\frac{2a+13b}{3a-7b}=\frac{2c+13d}{3c-7d}\) (với a,b,c,d khác 0)
Chứng minh rằng: \(\frac{a}{b}=\frac{c}{d}\)
Rút gọn biểu thức:
a) \(\frac{2.8^4.27^2+4.6^9}{2^7.6^7+2^7.40.9^4}\)
b) \(\frac{\left(\frac{2}{3}\right)^3.\left(\frac{-3}{4}\right)^2.\left(-1\right)^5}{\left(\frac{2}{5}\right)^2.\left(\frac{-5}{12}\right)^3}\)
tính:
a)\(\left(1+\frac{2}{3}-\frac{1}{4}\right)\left(0,8-\frac{3}{4}\right)^2\)
b)\(\frac{3}{5}:\left(\frac{-1}{15}-\frac{1}{6}\right)+\frac{3}{5}:\left(\frac{-1}{3}-1\frac{1}{15}\right)\)
Tính
a. \(\frac{\left(13\frac{1}{4}-2\frac{5}{7}-10\frac{5}{6}\right).230\frac{1}{25}+46\frac{3}{4}}{\left(1\frac{3}{10}+\frac{10}{3}\right):\left(12\frac{1}{3}-14\frac{2}{7}\right)}\)
1)thực hiện phép tính hợp lí nhất có thể:
\(D=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}\right):\left(\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{1}{2011}\right)\)
tính\(\left[\frac{\left(4,6+5.6,25\right).14}{4.0,125+2,3}:\frac{17}{6}\right]:\frac{27.9\frac{3}{5}}{12,4+4\frac{2}{5}}+\left(4\frac{5}{8}-\frac{13}{6}:8\frac{2}{3}\right):\left(3,25:2\frac{1}{4}\right)\)