\(b^2=a.c\)
⇔ \(\dfrac{b}{c}=\dfrac{a}{b}\)
\(c^2=b.d\)
⇔ \(\dfrac{c}{d}=\dfrac{b}{c}\)
⇒ \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)
⇒ \(\left(\dfrac{a}{b}\right)^3=\left(\dfrac{b}{c}\right)^3=\left(\dfrac{c}{d}\right)^3=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a}{d}=\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{d}=\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(đpcm\right)\)