Trong mp (ABC), nối MP kéo dài cắt BC kéo dài tại E
Trong mp (ACD), nối NP kéo dài cắt CD kéo dài tại F
\(\Rightarrow EF=\left(MNP\right)\cap\left(BCD\right)\)
Trong mp (ABC), nối MP kéo dài cắt BC kéo dài tại E
Trong mp (ACD), nối NP kéo dài cắt CD kéo dài tại F
\(\Rightarrow EF=\left(MNP\right)\cap\left(BCD\right)\)
Chỉ câu d thoi ạ Cho tứ diện ABCD. Gọi I và K lần lượt là trung điểm của AB và CD. J là một điểm trên đoạn AD sao cho AD = 3JD.a) Tìm giao điểm F của đường thẳng AC và mặt phẳng BCD b) Tìm giao tuyến d của hai mặt phẳng IJK và ABC. c) chứng minh AC, KJ và d đồng quy d) Gọi O là trung điểm IK và G là trọng tâm tam giác BCD. Chứng minh A,O,G thẳng hàng.
Cho hình chóp SABCD có đáy ABCD là hình thang, đáy lớn là AD. Gọi M,N,P lần lượt là trung điểm của AB,SA,SD.
a. Tìm giao tuyến của 2 mp (SAB) và (SCD)
b. chứng minh NP // (SBC)
c. tìm giao điểm của SC với mp(MNP)
Cho tứ diện ABCD, gọi M là trung điểm của AC, trên cạnh AD lấy điểm N sao cho AN = 2ND, trên cạnh BC lấy điểm Q sao cho BC = 4.PQ. Gọi I là giao điểm của đường thẳng MN và mặt phẳng (BCD), J là giao điểm của đường thẳng BD và mặt phẳng (MNQ). Khi đó JB/ JD + JQ/JI bằng
Cho hình chóp S ABCD có đáy hình bình hành tâm O, hai điểm M,N lần lượt là trung điểm của SB,SD. Điểm P thuộc SC và không là trung điểm của SC a)tìm giao điểm Q của SA với mp(MNP) b)tìm giao điểm H của AD với mp(MNP c)tìm giao điểm G của AC với mp(MNP) d) chứng minh MQ,AB,GH đồng quy
Cho hình chóp tứ giác S.ABCD, đáy ABCD là hình thang có
AD || BC, AD = 2BC. Gọi M và N lần lượt là trung điểm của các cạnh
SC và BC.
a) Tìm giao tuyến của hai mp (SAB) và (SCD).
b) Chứng minh MN || (SBD).
c) Tìm giao điểm của SD với mp (AMN)
Cho hình chóp S.ABCD đáy là hình bình hành tâm O. Gọi M , N , P lần lượt là trung điểm SA , SB , SC
a ) Tìm giao tuyến của ( DMP ) và ( ABCD )
b ) Tìm giao tuyến của ( DMP ) và ( SBC )
c ) Tìm giao điểm của SB và ( DMP )
d ) Chứng minh MP / ( ABCD ) và MN / ( SCD )
e ) Cm : ( MNP ) // ( ABCD ) .
f ) Gọi Q là trung điểm MN . Chứng minh PQ / ( ABCD )
g ) Tìm thiết diện của ( MNP ) với S.ABCD
cho tứ diện ABCD. Gọi M,N lần lượt là trung điểm cạnh AB, CD, E là điểm chia BC theo tỉ số BE/BC=1/2. Trên đoạn thẳng AM lấy điểm H. Tìm giao tuyến của mặt phẳng (P) đi qua H và song song với mặt phẳng (MNE). Tìm giáo tuyến của mặt phẳng (P) và mặt phẳng (BCD); mặt phẳng (P) và mặt phẳng (ABD)
giúp mình giải những bài này vs, mình đg cần gấp, thanks.
bài 1: Cho tứ diện ABCD . Gọi G1 và G2 lần lượt là trọng tâm của tam giác ACD và BCD.
1. Tìm giao tuyến của hai mặt phẳng (CG1G2) và (ABD).
2. Chứng minh rằng G1G2 song song mặt phẳng (ABC).
bài 2: cho tứ dện ABCD có G là trọng tâm. Gọi A1 là trọng tâm của tam giác BCD
a. CMR: A, G, A1 thẳng hàng
b. CMR: GA=3GA'
bài 3: cho tứ diện ABCD và 3 điểm P,Q,R lần lượt là trung điểm của các cạnh AB, CD; P là điểm nằm trên cạnh AD nhưng không trùng với trùng với trung điểm của AD. Tìm thiết diện của tứ diện cắt bởi (MNP)
Câu 1. Cho tứ diện ABCD, G là trọng tâm tam giác ABD. Trên đoạn BC lấy điểm M sao cho M=2MC. Tìm giao tuyến của 2 mặt phẳng (BCD) và (ACG)
Câu 2. Cho tứ diện đều ABCD có các cạnh bằng a. Gọi M, N, P lần lượt là trung điểm của AB, AD và CD.
a) Chứng minh MN song song với (BCD)
b) Xác định thiết diện của hình chóp cắt bởi (MNP) và tính diện tích thiết diện
Câu 3. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của AB và SD
a) Tìm giao tuyến của các cặp mặt phẳng (SAD) và (SBD); (SAC) và (ABCD); (SAC) và (SDM)
b) Tìm giao tuyến của BD và mp (SAC); SA và mp (CMN)
Câu 4. Cho hình chóp S.ABCD có đáy ABCD là hình thang, đáy lớn AB. Gọi M là điểm bất kì thuộc đoạn thẳng SD. Tìm giao tuyến của các mặt phẳng:
a) d1 = (SAB) giao (SCD)
b) d2 = (SCD) giao (MAB). Từ đó chứng minh d1 song song d2