Bài 4: (3 điểm) Cho ∆MNP, lấy O là trung điểm cạnh NP. Trên tia đối của tia OM lấy điểm E sao cho OM=OE. Chứng minh rằng:
a)∆MNO=∆EPO
b)MN // EP
c) Kẻ MH vuông góc với NP, EK vuông góc với NP (H, K thuộc NP). Chứng minh NK=PH.
d)MP // NE
Cho tam giác MNP vuông tại N (MN > NP). Tia phân giác góc M cắt NP ở O. Kẻ OH vuông góc với MP. Trên tia NP lấy điểm E sao cho MN = NE. Đường thẳng vuông góc với NE cắt tia OH ở F.
a° là số đo góc OMF. Tính E = 3a
Cho ∆MNP, lấy O là trung điểm cạnh NP. Trên tia đối của tia OM lấy điểm E sao cho OM=OE. Chứng minh rằng:
a)∆MNO=∆EPO
b)MN // EP
c) Kẻ MH vuông góc với NP, EK vuông góc với NP (H, K thuộc NP). Chứng minh NK=PH.
d)MP // NE
Tam giác ABC vuông tại A, AB= 8cm, AC=6cm
a, tính BC
b, So sánh góc B và góc C
c, Từ điểm M trên cạnh BC kẻ MI vuông AB. Trên tia đối IM lấy điểm N sao cho IM =IN. CM tam giác AMN cân
d, trên tia đối AC lấy điểm K, AK=AC. CM N,K,B thẳng hàng
MÌNH ĐANG CẦN GẤP
Cho tam giác ABC vuông tại A. M là điểm bất kì thuộc cạnh BC. Kẻ MI vuông góc với AC tại I. Trên tia đối của tia IM lấy điểm N sao cho MI = IN.
Chứng minh:
a) Góc BAM bằng góc AMI.
b) Tam giác MIC= tam giác NIC
c) Lấy K thuộc cạnh AB sao cho AK = MI. Chứng minh MK//AC.
d) AM=KI
cho tam giác MNP. I là trung điểm MN. Trên tia đối của IP lấy điểm Q sao cho IQ = IP.
a, Chứng minh tam giác MIQ = tam giác NIP. QM = NP và QM // NP
b, Gọi E là trung điểm MP. Trên tia đối của EN lấy K sao cho EN = EK. Chứng minh MK // PN
c, Chứng minh M, A, K thẳng hàng. M là trung điểm QK
Bài 4 (4,0 điểm): Cho tam giác ABC cân tại A. (AC > BC). Gọi M là trung điểm của BC.
a) Chứng minh: tam giác ABM = tam giác AMC và AM vuông góc với BC.
b) Gọi I là trung điểm của AC. Trên tia đối của tia IM lấy điểm D sao cho ID = IM. Chứng minh: AD = CM.
c) BD cắt AC, AM lần lượt tại G và E. Chứng minh: rAED = rMEB
và BC < 3AG