Nếu \(a+b+c\) khác \(0\) thì theo tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}=\dfrac{a+b+c}{2.\left(a+b+c\right)}=\dfrac{1}{2}\)
Nếu \(a+b+c = 0\)
\(\Rightarrow\)\(b+c = -a\)
\(\Rightarrow\)\(c+a = -b\)
\(\Rightarrow\)\(a+b = -c \)
\(\Rightarrow\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=-1\)