Cho các số dương a, b, c thỏa mãn: \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}=\sqrt{2011}\). CMR: \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}++\dfrac{c^2}{a+b}\ge\dfrac{1}{2}\sqrt{\dfrac{2011}{2}}\)
Cho các số dương a, b, c thỏa mãn: \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}=\sqrt{2011}\). CMR: \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{1}{2}\sqrt{\dfrac{2011}{2}}\)
Cho a, b, c là các số thực dương thoả mãn a + b + c = abc. Chứng minh rằng: \(\dfrac{1}{\sqrt{1+a^2}}+\dfrac{1}{\sqrt{1+b^2}}+\dfrac{1}{\sqrt{1+c^2}}\ge\dfrac{3}{2}\)
cho a,b,c dương thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\). tìm GTLN của \(P=\dfrac{1}{\sqrt{a^2-ab+b^2}}+\dfrac{1}{\sqrt{b^2-bc+c^2}}+\dfrac{1}{\sqrt{c^2-ca+a^2}}\)
Cho 3 số a, b, c không âm thỏa mãn điều kiện a+b+c=2, chứng minh rằng: \(\dfrac{\sqrt{a}}{1+a}+\dfrac{\sqrt{b}}{1+a+b}+\dfrac{\sqrt{c}}{1+a+b+c}\le2\)
Cho 3 số thực a,b,c dương và thỏa mãn: \(a^2+b^2+c^2=3\). Tìm GTNN của biểu thức: \(A=\dfrac{1}{\sqrt{1+8a^3}}+\dfrac{1}{\sqrt{1+8b^3}}+\dfrac{1}{\sqrt{1+8c^3}}\)
Cho 3 số dương a,b,c và abc=1. Chứng minh \(\dfrac{b+c}{\sqrt{a}}+\dfrac{a+c}{\sqrt{b}}+\dfrac{a+b}{\sqrt{c}}\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+3\)
Cho 3 số dương a, b, c thoả mãn: \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}=\sqrt{2011}\). Chứng minh rằng: \(\dfrac{a^2}{b+c}+\dfrac{a^2}{b+c}+\dfrac{a^2}{b+c}\ge\dfrac{1}{2}\sqrt{\dfrac{2011}{2}}\)
Cho 3 số thực dương a, b, c thoả mãn \(a+b+c\le\sqrt{3}\). Chứng minh rằng: \(\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{3}{2}\)