Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sóc nâu

Cho 3 số thực a, b, c thỏa mãn a + b + c \(\le\) \(\sqrt{3}\) . C/m rằng: \(\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{3}{2}\)

Lightning Farron
14 tháng 7 2017 lúc 11:27

Ta có BĐT \(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2\)

\(\Leftrightarrow\dfrac{1}{2}\left(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right)\ge0\) (đúng)

\(\Rightarrow ab+bc+ca\le\dfrac{\left(a+b+c\right)^2}{3}=1\)

Khi đó áp dụng BĐT Cauchy-Schwarz ta có:

\(\dfrac{a}{\sqrt{a^2+1}}\le\dfrac{a}{\sqrt{a^2+ab+bc+ca}}=\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)

\(\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\). Tương tự cho 2 BĐT còn lại:

\(\dfrac{b}{\sqrt{b^2+1}}\le\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{b}{b+c}\right);\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{1}{2}\left(\dfrac{c}{a+c}+\dfrac{c}{b+c}\right)\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\le\dfrac{1}{2}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{3}{2}=VP\)

Xảy ra khi \(a=b=c=\dfrac{\sqrt{3}}{3}\)

Mỹ Duyên
14 tháng 7 2017 lúc 11:39

Áp dụng BĐT Bu-nhi-a ta có:

\(\sqrt{a^2+1}=\sqrt{a^2+\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{3}}=\dfrac{1}{2}\sqrt{4\left(a^2+\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{3}\right)}\)

\(\ge\dfrac{1}{2}\sqrt{\left(a+\dfrac{1}{\sqrt{3}}.3\right)^2}=\dfrac{1}{2}\sqrt{\left(a+\sqrt{3}\right)^2}=\dfrac{a+\sqrt{3}}{2}\left(a>0\right)\)

Tương tự ta cũng có: \(\dfrac{b}{\sqrt{b^2+1}}\le\dfrac{2b}{b+\sqrt{3}}\)

\(\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{2c}{c+\sqrt{3}}\)

=> \(\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\)

\(\le2\left(\dfrac{a}{2a+b+c}+\dfrac{b}{2b+a+c}+\dfrac{c}{2c+a+b}\right)\) (1)

Áp dụng BĐT phụ: \(\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\ge\dfrac{1}{x+y}\) ta có:

\(\dfrac{a}{2a+b+c}+\dfrac{b}{2b+a+c}+\dfrac{c}{2c+a+b}\)

\(=\dfrac{a}{\left(a+b\right)+\left(a+c\right)}+\dfrac{b}{\left(a+b\right)+\left(b+c\right)}+\dfrac{c}{\left(a+c\right)+\left(b+c\right)}\)

\(\le\dfrac{1}{4}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}+\dfrac{b}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{a+c}+\dfrac{c}{b+c}\right)\)

\(=\dfrac{1}{4}\left(\dfrac{a+c}{a+c}+\dfrac{b+a}{a+b}+\dfrac{c+b}{b+c}\right)=\dfrac{3}{4}\) (2)

Từ (1); (2)

=> \(\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\le2.\dfrac{3}{4}=\dfrac{3}{2}\left(đpcm\right)\)

Dấu = xảy ra <=> \(a=b=c=\dfrac{1}{\sqrt{3}}\)


Các câu hỏi tương tự
Vũ Đình Thái
Xem chi tiết
Neet
Xem chi tiết
Nguyễn Đức Thịnh
Xem chi tiết
Hoang Hung Quan
Xem chi tiết
Vũ Tiền Châu
Xem chi tiết
noname
Xem chi tiết
Hoang Hung Quan
Xem chi tiết
byun aegi park
Xem chi tiết
Lê Hương Giang
Xem chi tiết