Cauchy-Schwarz: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c}=\dfrac{9}{1}=9\)
Cauchy-Schwarz: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c}=\dfrac{9}{1}=9\)
cho a,b,c>0 và \(a+b+c\le1\)
cmr \(\dfrac{1}{a^2+2bc}+\dfrac{1}{b^2+2ac}+\dfrac{1}{c^2+2ab}\ge9\)
1, Cho x; y; z ≠0 và \(\dfrac{1}{x}\) + \(\dfrac{1}{y}\)+ \(\dfrac{1}{z}\)=\(\dfrac{2}{2x+y+2z}\). Cmr: (2x+y)(y+2z)(z+x)= 0
2, Cho \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=1\). Cmr: \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}=0\)
Gấp ạ, ai giúp mình với!!!!
Cho \(\dfrac{a^2+b^2-c^2}{2ab}+\dfrac{b^2+c^2-a^2}{2bc}+\dfrac{c^2+a^2-b^2}{2ac}=1\) (1)
Chứng minh rằng:
a. Trong ba số a , b , c có một số bằng tổng hai số kia.
b, Trong ba phân thức ở vế trái có một phân thức bằng -1 và hai phân thức còn lại bằng 1
Cho \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\) và \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\). CMR: \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\)
Cho a, b, c là các số thực dương thỏa mãn a+b+c=1. Tìm GTNN của biểu thức
S=\(\dfrac{a^2+b^2+2}{a+b-ab}+\dfrac{a^2+c^2+2}{a+c-ac}+\dfrac{c^2+b^2+2}{c+b-bc}\)
1.Cmr , với mọi số tự nhiên n lớn hơn hoặc bằng 1
a) \(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+....+\dfrac{1}{\left(2n\right)^2}< \dfrac{1}{2}\)
b) \(\dfrac{1}{3^2}+\dfrac{1}{5^2}+\dfrac{1}{7^2}+....+\dfrac{1}{\left(2n+1\right)^2}< \dfrac{1}{4}\)
2.Cmr với mọi số tự nhiên lớn hơn hoặc bằng 2
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{n^2}< \dfrac{2}{3}\)
Bài 148: Tính giá trị của biểu thức biết a+b+c=0
\(A=\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)\left(\dfrac{c}{a-b}+\dfrac{a}{b-c}+\dfrac{b}{c-a}\right)\)
Bài 149: CMR nếu \(\left(a^2-bc\right)\left(b-abc\right)=\left(b^2-ac\right)\left(a-abc\right)\)
và các số a, b, c, a-b khác 0 thì \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=a+b+c\)
Bài 1: phân tích đa thức thành nhân tử
a. (b3-c3) + b. (c3-a3) + c.(a3-b3)
Bài 2: cho \(\dfrac{a-c}{b+c\dfrac{ }{ }}\)+ \(\dfrac{b-a}{c+a}\)+ \(\dfrac{c-b}{b+a}\)=1
CMR: \(\dfrac{a+b}{b+c}\)+ \(\dfrac{b+c}{c+a}\)+ \(\dfrac{c+a}{a+b}\)= 4
CMR: 1<\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{a+c}< 2\)