Cho 3 số a,b,c khác nhau và đôi một khác nhau và thỏa mãn a+b+c=0
Tính giá trị biểu thức: \(Q=\left(\dfrac{a}{b-c}+\dfrac{b}{c-a}+\dfrac{c}{a-b}\right)\left(\dfrac{b-c}{a}+\dfrac{c-a}{b}+\dfrac{a-b}{c}\right)\)
Cho a,b,c khác 0 thỏa mãn \(\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{a}{c}\right)=8\)
CMR \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}=\dfrac{3}{4}+\dfrac{ab}{\left(a+b\right)\left(b+c\right)}+\dfrac{bc}{\left(b+c\right)\left(c+a\right)}+\dfrac{ca}{\left(c+a\right)\left(a+b\right)}\)
Cho 3 số thực a, b, c đôi một khác nhau thỏa mãn: \(\dfrac{a}{b-c}+\dfrac{b}{c-a}+\dfrac{c}{a-b}=0\)
CMR: \(\dfrac{a}{\left(b-c\right)^2}+\dfrac{b}{\left(c-a\right)^2}+\dfrac{c}{\left(a-b\right)^2}=0\)
Tìm GTNN của :
a) \(A=\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)với a, b > 0
b) \(B=\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)với a, b, c > 0
c) \(C=\left(a+b+c+d\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\right)\)với a, b, c, d > 0
Cho 3 số a, b, c thỏa mãn a # -b, b # -c, c # -a.
Chứng minh rằng : \(\dfrac{a^2-bc}{\left(a+b\right)\left(a+c\right)}+\dfrac{b^2-ac}{\left(a+b\right)\left(b+c\right)}+\dfrac{c^2-ab}{\left(c+a\right)\left(c+b\right)}=0\)
Cho \(\dfrac{a-\left(c-b\right)}{b-c}+\dfrac{b-\left(a-c\right)}{c-a}+\dfrac{c-\left(b-a\right)}{a-b}=3\)
Chứng minh rằng: \(\dfrac{a}{\left(b-c\right)^2}+\dfrac{b}{\left(c-a\right)^2}+\dfrac{c}{\left(a-b\right)^2}=0\)
Cho abc khác 0 ; a+b+c=0 . Hãy rút gọn biểu thức:
\(T=\dfrac{a^2}{\left(a-b\right)\left(a+b\right)-c^2}+\dfrac{b^2}{\left(b-c\right)\left(b+c\right)-a^2}+\dfrac{c^2}{\left(c-a\right)\left(c+a\right)-b^2}\)
Cho \(\dfrac{x}{a}\) + \(\dfrac{y}{b}+\dfrac{z}{c}=2\) và \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=2\) ( a,b,c,x,y,z ≠ 0) Tính giá trị của biểu thức
D = \(\left(\dfrac{a}{x}\right)^2+\left(\dfrac{b}{y}\right)^2+\left(\dfrac{c}{z}\right)^2\)
Cho a,b,c khác 0 thỏa mãn \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1\)
Tính P = \(\dfrac{\left(a^{11}+b^{11}\right)\left(c^9+b^9\right)\left(c^{2011}+a^{2011}\right)}{a^{14}+b^{14}+c^{2018}}\)