Ta có:
\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}\)
<=> \(ab\cdot\left(b+c\right)=bc\cdot\left(a+b\right)\)
<=> \(b^2\cdot\left(a-c\right)=0\)
<=> \(a=c\)
Làm tương tự ta được \(b=a\) => a=b=c
=> M=1
Ta có:
\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}\)
<=> \(ab\cdot\left(b+c\right)=bc\cdot\left(a+b\right)\)
<=> \(b^2\cdot\left(a-c\right)=0\)
<=> \(a=c\)
Làm tương tự ta được \(b=a\) => a=b=c
=> M=1
Cho 3 số a,b,c ≠ 0 thỏa mãn: \(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\)
Tính giá trị của biểu thức M= \(\dfrac{ab+bc+ca}{a^2+b^2+c^2}\)
Cho a, b, c là 3 số khác 0 thỏa mãn: \(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\)(với giả thiết các tỉ số đều có nghĩa).
Tính giá trị của biểu thức \(N=\dfrac{ab+bc+ca}{a^2+b^2+c^2}\)
cho a,b,c là ba số khác 0 thỏa mãn: \(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\) (với giả thiết các tỉ số đều có nghĩa). Tính giá trị biểu thức M = \(\dfrac{ab+bc +ca}{a^2+b^2+c^2}\)
Cho a, b, c ≠ 0 thỏa mãn \(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\). Tính giá trị biểu thức ( a \(-\)b )3 + ( c \(-\) a )3
Cho a,b, c khác 0 , thỏa mãn : \(\dfrac{a.b}{a+b}\) = \(\dfrac{b.c}{b+c}\) = \(\dfrac{a.c}{a+c}\)
Tính P = \(\dfrac{ab^2+bc^2+ca^2}{a^3+b^3+c^3}\)
Bài 1 : Tìm a,b,c biết :
a) Cho \(\dfrac{\overline{ab}+\overline{bc}}{a+b}=\dfrac{\overline{bc}+\overline{ca}}{b+c}=\dfrac{\overline{ca}+\overline{ab}}{c+a}\left(a,b,c\ne0\right)\). Tính \(P=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)
b) Cho a,b,c là các số thực khác 0 sao cho : \(\dfrac{2x+2y-z}{z}=\dfrac{2x-y+2z}{y}=\dfrac{x+2y+2z}{x}\). Tính giá trị của biểu thức \(M=\dfrac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{8.x.y.z}\)
1, Tìm các số thực dương a,b,c thõa mãn
\(\dfrac{ab+1}{3}=\dfrac{bc+2}{8}=\dfrac{ca-1}{2}\) và ab+bc+ca=11
Bài 17: Cho a, b, c là 3 số thực khác 0, thỏa mãn điều kiện : \(a+b\ne-c\) và \(\dfrac{a+b-c}{c}\)=\(\dfrac{b+c-a}{a}\)=\(\dfrac{c+a-b}{b}\). Tính giá trị biểu thức P=\(\left(1+\dfrac{b}{a}\right)\)x\(\left(1+\dfrac{a}{c}\right)\)x\(\left(1+\dfrac{c}{b}\right)\)
Cho \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\). Tính \(A=\dfrac{bc}{a^2}+\dfrac{ca}{b^2}+\dfrac{ab}{c^2}\)