cho đường tròn (O;R) từ điểm A ở bên ngoài đường tròn sao cho OA = 2R. Kẻ 2 tiếp tuyến AB,AC với đường tròn ( B,C tiếp điểm)
a) vẽ đường kính COD. C/Minh BD//AO
b) gọi E là 1 điểm thuộc cung nhỏ BC. kẻ tiếp tuyến với đường tròn tại E cắt AB và AC theo thức tự M,N. TÍNH GÓC MON VÀ chu vi tam giác AMN
cho (O;R) và (O'r) tiếp xúc tại A. Đường thẳng OO' cắt (O;R) (O'r) tại B,C(B,C khác A).Tiếp tuyến chung ngoài EF(E thuộc (O), F thuộc (O'). BE cắt CF tại M.
1. Cm; MA là tiếp tuyến chung của (O)và (O')
2. Tính EF theo R và r.
3. Định dạng các đường tròn (O;R) và (O'r) sao cho S tam giác BCM lớn nhất.
cho (O;R) và (O'r) tiếp xúc tại A. Đường thẳng OO' cắt (O;R) (O'r) tại B,C(B,C khác A).Tiếp tuyến chung ngoài EF(E thuộc (O), F thuộc (O'). BE cắt CF tại M.
1. Cm; MA là tiếp tuyến chung của (O)và (O')
2. Tính EF theo R và r.
3. Định dạng các đường tròn (O;R) và (O'r) sao cho S tam giác BCM lớn nhất.
Cho hai đường tròn (O) và (O') cắt nhau tại A và B. Gọi I là trung điểm của OO'. Qua A vẽ đường thẳng vuông góc với IA, cắt các đường tròn )O) và (O') tại C vad D (khác A). Chứng minh rằng AC = AD ?
Cho hai đường tròn (O) và (O') cắt nhau tại A và B, trong đó O' nằm trên đường tròn (O). Kẻ đường kính O'OC của đường tròn (O)
a) Chứng minh rằng CA, CB là các tiếp tuyến của đường tròn (O')
b) Đường vuông góc với AO' tại O' cắt CB ở I. Đường vuông góc với AC tại C cắt đường thẳng O'B ở K. Chứng minh rằng ba điểm O, I, K thẳng hàng
Cho đường tròn (O) và đường thẳng xy tiếp xúc với đường tròn tại A. Vẽ đường tròn (I) đường kính OA.
a) Chứng minh rằng hai đường tròn (O) và (I) tiếp xúc với nhau
b) Vẽ dây cung AC của (O) cắt I tại một điểm thứ hai là M. Chứng minh MA=MC
c) đường thẳng OM cắt xy tại B. Chứng minh rằng BC là tiếp tuyến của (O)
BÀI 1 : Cho hai đường tròn (O) và (O') tiếp xúc ngoài tại A. Đường nối tâm OO' cắt (O) ở B, cắt (O') ở C. DE là một tiếp tuyến chung ngoài của hai đường tròn (D thuộc (O), E thuộc (O')). Gọi M là giao điểm của BD và CE. Chứng minh :
a) góc MDE vuông
b) MA là tiếp tuyến chung của (O) và (O')
c) MD . MB = ME . MC
BÀI 2 : Cho (O;R) và ( I ; r) tiếp xúc ngoài tại A . Vẽ tiếp tuyến chung ngoài BC ( BC thuộc (O) ; C thuộc (I) ). Tiếp tuyến tại A có hai đường tròn cắt BC ở M. Chứng minh:
a) M là trung điểm BC
b) tam giác ABC và tam giác DMI vuông
c) Tính BC theo R và r
BÀI 3 : Cho (O:R) và (O`; r) tiếp xúc ngoài tại A . Gọi BC , DE là các tiếp tuyến chung ngoài của 2 đường tròn ( B,D thuộc (O) . Chứng minh :
a) BDEC là hình thang cân
b) Tính diện tích BDEC theo R và r
BÀI 4 : Cho nửa đường tròn tâm O , đường kính AB. VẼ (O`) đường kính OA . Qua A vẽ dây AC của (O) cắt (O`) ở M . Chứng kinh :
a) (O) và (O`) tiếp xúc nhau
b) O`M // OC
c) M là trung điểm của AC và OM // BC
a) Cho đường tròn (O) và điểm A nằm trên đường tròn . Từ A vẽ đường thẳng d vuông góc OA tại A. Chứng tỏ đường thẳng d là tiếp tuyến của đường tròn (O)
b) cho đường tròn (O) và điểm A nằm bên ngòai đường tròn. Vẽ đường tròn tâm I đường kính AO, đường tròn (I) cắt đường tròn (O) tại B và C. Chứng tỏ rằng AB và AC là tiếp tuyến của đường tròn (O)
Cho (O) và (O') tiếp xúc ngoài tại A, BC là tiếp tuyến chung ngoài của 2 đường tròn (B thuộc (O), C thuộc (O')). Vẽ AI là tiếp tuyến chung trong của 2 đường tròn (I nằm trên BC). Vẽ đường kính BD của (O) và đường kính CE của (O').
a) Chứng minh rằng: B,A,E thẳng hàng và C,A,D thẳng hàng
b) Chứng minh diện tích 2 tam giác ABC va DAF bằng nhau
c) K là trung điểm của DE. Chứng minh rằng đường tròn ngoại tiếp tam giác OKO' tiếp xúc với BC