Bài 7: Ví trí tương đối của hai đường tròn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Alison Jennie

Cho đường tròn (O) và đường thẳng xy tiếp xúc với đường tròn tại A. Vẽ đường tròn (I) đường kính OA.

a) Chứng minh rằng hai đường tròn (O) và (I) tiếp xúc với nhau

b) Vẽ dây cung AC của (O) cắt I tại một điểm thứ hai là M. Chứng minh MA=MC

c) đường thẳng OM cắt xy tại B. Chứng minh rằng BC là tiếp tuyến của (O)

KZ
30 tháng 9 2017 lúc 18:43

Ví trí tương đối của hai đường tròn

a) Ta có: \(A\in\left(O\right)\); \(A\in\left(I\right)\) (OA là đường kính (I))

=> (O) và (I) tiếp xúc với nhau tại A

b) Ta có : OMA^ = 90o (góc nt chắn nửa (I))

=> OM _|_ AC => MA = MC

c) Ta sẽ c/m OCM^ + MCB^ = 90o

Ta có: OAM^ = OCM^ (tam giác AOC cân tại O, OA và OC cùng là bán kính (O) )

Xét 2 tam giác vuông AMB và CMB :

AM = CM (cmt); MB chung

=> \(\Delta AMB=\Delta CMB\) (2 cạnh góc vuông)

=> MAB^ = MCB^

Mặt khác: OAM^ + MAB^ = 90o (Ay là tiếp tuyến của (O) )

=> OCM^ + MCB^ = 90o => C= CB _|_ OC => CB là tiếp tuyến (O)


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Hương Thu Đây
Xem chi tiết
Hà Ngân
Xem chi tiết
Jenny Edward
Xem chi tiết
Sakura-chan
Xem chi tiết
Homin
Xem chi tiết
trà nguyễn
Xem chi tiết