Ta có: 2.(x + y) = 5.(y + z) = 3.(x + z)
\(\Rightarrow\frac{2.\left(x+y\right)}{30}=\frac{5.\left(y+z\right)}{30}=\frac{3.\left(x+z\right)}{30}\)
\(\Rightarrow\frac{x+y}{15}=\frac{y+z}{6}=\frac{x+z}{10}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x+y}{15}=\frac{y+z}{6}=\frac{x+z}{10}=\frac{\left(x+z\right)-\left(y+z\right)}{10-6}=\frac{\left(x+y\right)-\left(x+z\right)}{15-10}\)
\(=\frac{x-y}{4}=\frac{y-z}{5}\left(đpcm\right)\)
Vì 5 (y + z) = 3 (z + x) \(\Rightarrow\) \(\frac{z+x}{5}=\frac{y+z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{z+x}{5}=\frac{y+z}{3}=\frac{z+x-y-z}{5-3}=\frac{x-y}{2}\)
Do đó: \(\frac{z+x}{5}=\frac{x-y}{2}\Rightarrow\frac{z+x}{10}=\frac{x-y}{4}\left(1\right)\)
Ta lại có: 2 (x + y) = 3 (z + x)
\(\Rightarrow\) \(\frac{z+x}{2}=\frac{x+y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{z+x}{2}=\frac{x+y}{3}=\frac{z+x-x-y}{2-3}=y-x\)
Do đó: \(\frac{z+x}{2}=y-z\Rightarrow\frac{z+x}{10}=\frac{y-z}{5}\left(2\right)\)
Từ (1) và (2) suy ra: \(\frac{x-y}{4}=\frac{y-z}{5}\) (đpcm)