Cho đường tròn tâm O bán kính R và đường thẳng (d) cắt đường tròn tâm O tại hai điểm C và D (đường thẳng d không đi qua tâm O). Từ điểm S bất kì thuộc tia CD (S nằm ngoài đường tròn tâm O), kẻ hai tiếp tuyến SA và SB với đường tròn tâm O (với A và B là các tiếp điểm). Gọi H là trung điểm của đoạn CD và E là giao điểm của AB với SC. Chứng minh rằng: Khi S di chuyển trên tia CD (S nằm ngoài đường tròn tâm O) thì đường thẳng AB luôn đi qua 1 điểm cố định
Cho đường tròn tâm O và điểm M nằm ngoài đường tròn đó. Qua M kẻ các tiếp tuyến MA, MB với đường tròn (A, B là tiếp điểm). Đường thẳng (d) thay đổi đi qua M, không đi qua O và luôn cắt đường tròn tại hai điểm phân biệt C và D (C nằm giữa M và D).
a) Chứng minh AMBO là tứ giác nội tiếp.
b) Chứng minh MC.MD=MA\(^2\)
Cho đường tròn tâm O bán kính R và đường thẳng(Δ)không có điểm chung với đường tròn tâm( O), H là hình chiếu vuông góc của O trên (Δ) .từ điểm M bất kì trên (Δ) ( M không trùng H), vẽ 2 tiếp tuyến MA, MB với đường tròn (O) (A,B là hai tiếp điểm ).Gọi I, K theo thứ tự là giao điểm của AB với OM và OH
1. Chứng minh AB = 2 .AK với 5 điểmM ,A ,O, B, H cùng thuộc đường tròn
2 .Chứng minh OI.OH = OK.OM = \(R^2\)
3.trên đoạn OA lấy điểm N sao cho AN = 2ON. đường trung trực của BN cắt OM ở E .tính tỉ số\(\dfrac{OE}{OM}\)
Cho nửa đường tròn tâm (O) đường kính AB . Vẽ hai tiếp tuyến Ax , By với nửa đường tròn . M là 1 điểm bất kì trên nửa đường tròn . Qua M vẽ đường tiếp tuyến với cắt đường tròn cắt Ax , By thứ tự tại D,C Chứng minh : a) 4 điểm A,D,M,O cũng thuộc 1 đường tròn b) Đường tròn đường kính CD nhận AB là tiếp tuyến
1. Cho nửa đường tròn tâm O đường kính AB. Vẽ các tiếp tuyến Ax, By ( Ax, By cùng thuộc nửa mặt phẳng chứa nửa đường tròn bờ AB). Gọi M là điểm bất kì thuộc nửa đường tròn. Tiếp tuyến tại M cắt Ax, By tại C và D.
a) Chứng minh đường tròn đường kính CD tiếp xúc với AB.
b) Tìm vị trí của điểm M để hình thang ABDC có chu vi nhỏ nhất.
c) Kẻ MH⊥AB tại H. Chứng minh rằng BC đi qua trung điểm I của MH.
(Chỉ cần làm câu c thôi mấy câu để có số liệu thôi)
Cho đường tròn (O;R) và một điểm S nằm bên ngoài đường tròn .Kẻ các tiếp tuyến SA,SB với đường tròn (A,B là các tiếp điểm).Một đường thẳng đi qua S(không đi qua tâm 0)cắt đường tròn (O;R) tại hai điểm M và N nằm giữa S và N.Gọi H là giao điểm của SO và AB;I là trung điểm MN.Hai đường thẳng OI và AB cắt nhau E
a) Chứng minh IHSE là tứ giác nội tiếp đường tròn
b) Chứng minh : OI.OE=R\(^2\)
c) Cho SO=2R và MN=R\(\sqrt{3}\) .Tính diện tích tam giác ESM theo R
AI GIÚP VVS HELP ME T_T
Cho tam giác ABC đều, có AH là đường cao và M là điểm bất kì thuộc đoạn BC. Kẻ MP và MQ lần lượt vuông góc với AB và AC. Gọi O là trung điểm của AM. Gọi G là trọng tâm tam giác ABC, I là giao điểm của PQ và OH. Chứng minh rằng: 3 điểm M, I, G thẳng hàng
cho đường tròn (O) và điểm A nằm ngoài đường tròn. vẽ tiếp tuyến AM,AN với đường tròn O (M,N thuộc O). qua A vẽ một đường thẳng cắt đường tròn O tại hai điểm B,C phân biệt (B nằm giữa A và C). gọi H là trung điểm của đoạn BC
a.cm tứ giác AMHN nội tiếp đường tròn
b.cm AN\(^2\)=AB.AC
Cho đường tròn (O) nội tiếp tam giác ABC với các tiếp điểm là D; E; F lần lượt thuộc các cạnh BC; CA; AB. Chứng minh rằng tích các khoảng cách hạ từ một điểm P bất kì thuộc đường tròn (O) đến các cạnh của tam giác ABC bằng tích các khoảng cách từ điểm P đến các cạnh của tam giác DEF