Cho 2017 số nguyên dương \(a_1, a_2, a_3,..., a_{2017}\) thỏa mãn \(\dfrac{1}{a_1}+\dfrac{1}{a_2}+\dfrac{1}{a_3}+...+\dfrac{1}{a_{2017}}=1009\).Chứng minh rằng ít nhất 2 số trong 2017 số nguyên dương đã cho bằng nhau.
a,cho A=\(\frac{1}{7^2}-\frac{1}{7^4}+\frac{1}{7^6}-\frac{1}{7^8}+...+\) \(\frac{1}{7^{98}}-\frac{1}{7^{100}}\) .CMR:A<\(\frac{1}{50}\)
b,Giả sử có 2015 số nguyên dương \(a_1,a_2,a_3,...,a_{2015}\) thỏa mãn :\(\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+\frac{1}{a_4}+...+\) \(\frac{1}{a_{2015}}=1008\) .CMR:có ít nhất 2 trong 2015 số nguyên dương đã cho = nhau
Cho :
\(\frac{_{a_1}}{a^{_2}}=\frac{a_2}{a_3}=...=\frac{a^{_8}}{a_9}=\frac{a_9}{a_1}\) và các a khác 0
Chứng minh a1 = a2 = a3 = ... = a9
Cho 4 số khác 0 là a1 , a2 , a3 , a4 thỏa mãn \(a_2^2=a_1.a_3,a_3^2=a_2.a_4\)
Chứng minh \(\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}=\frac{a_1}{a_4}\)
Các bạn giúp mình nhé : Bạn Vũ Minh Tuấn , Nguyễn Việt Lâm , Nguyễn Văn Đạt , Băng Băng 2k6 và thầy Akai Haruma , Phynit và cùng với tất cả các bạn khác vào giúp mình với ạ !!!
Cho dãy tỉ số bằng nhau \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=...=\frac{a_{2017}}{a_{2018}}\) và \(\frac{a_1}{a_{2018}}=-5^{2017}\).
Biết \(a_2+a_3+a_4+...+a_{2018}\ne0\). Khi đó giá trị của biểu thức \(S=\frac{a_1+a_2+a_3+...+a_{2017}}{a_2+a_3+a_4+...+a_{2018}}\) là ...
Cho n số khác 0 là a1, a2, a3,....,an thảo mãn \(a_2^2=a_1.a_3,a_3^2=a_2.a_4,...,a_{n-1}^2=a_{n-2}.a_n\). Chứng minh \(\frac{a_1^3+a_2^3+a_3^3+...+a_{n-1}^3}{a_2^3+a_3^3+a_4^3+...+a_n^3}=\frac{a_1}{a_n}\)
.Cho 4 số khác 0: a1 a2 a3 a4 thỏa mãn a2^2 = a1 .a3 và a3^2 = a2 . a4
Chứng minh rằng
a1^3 + a2^3 + a3^3 a1
______________________________________ = ________
a2^3 + a3^3 + a4^4 a4
Cho 2021 số nguyên dương a1, a2, a3, ..., a2021 thỏa mãn \(\dfrac{1}{a_1}+\dfrac{1}{a_2}+...+\dfrac{1}{a_{2021}}=1011\)
CMR : Ít nhất 2 trong số 2021 số nguyên dương đã cho bằng nhau.
cho dãy tỉ số bằng nhau a1/a2=a2/a3=a3/a4=.....a2017/a2018 và a1/a2018=-5^1007. Biết a1+a2+a3+a4+...+a2018 khác 0. Tính a1+a2+a3+.....+a2017/a2+a3+a4+....a2018