Cho 2 số a, b thỏa mãn: \(2a^2\)+ \(\dfrac{1}{a^2}\)+ \(\dfrac{b^2}{4}\)= 4. Chứng minh rằng: ab ≥ -2
a^2 + b^2 + 1 >= ab + a + b. Cho a+b+c =0 chung minh a^3 + b^3 + c^3 = 3abc
Tính tích x.y, biết rằng x và y thỏa mãn các đẳng thức sau (a,b là các hằng số) :
a) (4a2 - 9)x = 4a + 4
với a ≠ \(\pm\dfrac{3}{2}\) và ( 3a2 + 3)y = 6a2 +9a với a ≠ -1
b( 2a3 - 2b3 )x - 3b = 3a với a ≠ b và (6a + 6b)y = (a-b)2 với a ≠ -b
( Chú ý rằng a2 + ab + b2 = a2 +2a . \(\dfrac{b}{2}+\dfrac{b^2}{4}+\dfrac{3b^2}{4}=\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\ge0\)
Do đó nếu a ≠ 0 hoặc b ≠ 0 thì a2 + ab + b2 ≥ 0)
1)Chứng minh : (( 2-n ).( n^2 - 3n +1) + n.(n^2 +12)+8 ) chia hết cho 5 ( vs mọi n thuộc Z)
2) Cho x - y = 7 . Tính GTBT: A= x^2 - 2xy +2y^2 -5x +5y +6
3) Cho a +b +c +d = 10. CMR: a^3 + b^3 + c^3 + d^3 = 3. (ab - cd).( c +d)
4) Cho x^2 + y^2 + z^2 = xy + xz + zy. CMR: x = y = z
5) Cho a^3 + b^3 + c^3 = 3abc. CMR: a + b + c = 0 hoặc a = b = c
6) Xác định p , q để x^3 + px +q chia hết cho x^2 - 2x -3
Giúp mk vs !!!! >.<
1. Cho a + b + c = 0. CM:
a/ a3 + b3 + c3 = 3abc.
b/ (ab + bc + ca)2 = a2b2 + b2c2 + c2a2.
c/ a4 + b4 + c4 = 2(ab + bc +ca)2.
2. Cho a + b + c + d = 0. CM:
a3 + b3 + c3 + d3 = 3(b + c)(ad - bc)
Chứng minh:
a) \(a^2+b^2\ge2ab\)
b) \(a^2+b^2+c^2\ge ab+ac+bc\)
c) Cho a, b, c >0. Chứng minh \(a^3+b^3+c^3\ge3abc\). Dấu bằng xảy ra khi nào?
Câu1:Chứng minh đẳng thức
a) (x-y)(x^3+x^2y+xy^2+y^3)=x^4-y^4
b) (x+y)(x+y+x)-2(x+1)(y+1)+2=x^2+y^2
c) Cho ab=1. Chứng minh đẳng thức a(b+1)+b(a+1)=(a+1)(b+1)
Câu 2: Tìm x biết (x-3)(x+x^2)+2(x-5)(x+1)-x^3=12
Cho \(a+b=5,ab=-2\left(a< b\right)\). Hãy tính \(a^2+b^2,\dfrac{1}{a^3}+\dfrac{1}{b^3},a-b,a^3-b^3\)
Cho a,b,c thỏa mãn \(b\ne c,a+b\ne c,c^2=2\left(ac+bc-ab\right)\)
C/m:
\(\dfrac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\dfrac{a-c}{b-c}\)