tìm 3 số thực dương x;y;z thỏa mãn \(\dfrac{2}{\sqrt{x}+2\sqrt{y}+3\sqrt{z}}-\dfrac{1}{2\sqrt{xy}+6\sqrt{yz}+3\sqrt{zx}}=\dfrac{1}{3}\)
Cho x,y là các số dương. Tìm GTLN của:\(A=\dfrac{\sqrt{yz}}{x+\sqrt{yz}}+\dfrac{\sqrt{xz}}{y+\sqrt{xz}}+\dfrac{\sqrt{xy}}{z+\sqrt{xy}}\)
Cho 3 số dương x,y,z thỏa mãn :
\(x\sqrt{x}+y\sqrt{y}+z\sqrt{z}=3\sqrt{xyz}\) . Tính giá trị biểu thức:
A=\(\left(1+\dfrac{\sqrt{x}}{\sqrt{y}}\right)\left(1+\dfrac{\sqrt{y}}{\sqrt{z}}\right)\left(1+\dfrac{\sqrt{z}}{\sqrt{x}}\right)\)
với x,y là các số dương thỏa mãn điều kiện x>_2y , tìm giá trị nhỏ nhất củA biểu thức M=\(\dfrac{x^2+y^2}{xy}\)
Chứng minh biểu thức A không phụ thuộc vào x,y (x>0,y>0,x≠y)
A=\(\left(\dfrac{2\sqrt{xy}}{x-y}+\dfrac{\sqrt{x}-\sqrt{y}}{2\sqrt{x}+2\sqrt{y}}\right).\dfrac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}+\dfrac{\sqrt{y}}{\sqrt{y}-\sqrt{x}}\)
Tìm các cặp số nguyên x,y thỏa mãn phương trình: \(\dfrac{x+y}{x^2-xy+y^2}=\dfrac{3}{7}\)
với các số thực x,y thay đổi thỏa mãn 0<x<1 , 0< y <1 . Chứng minh
\(x+y+x\sqrt{1-y^2}+y\sqrt{1-x^2}\le\dfrac{3\sqrt{3}}{2}\)
Cho x,y,z > 0. Tìm GTLN của: \(A=\dfrac{\sqrt{yz}}{x+2\sqrt{yz}}+\dfrac{\sqrt{xz}}{y+\sqrt{xz}}+\dfrac{\sqrt{xy}}{z+\sqrt{xy}}\)
Bài 1: Cho A=\(\left(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}+\dfrac{\sqrt{x^3}-\sqrt{y^3}}{y-x}\right):\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)với x≥0; y≥0; x≠y
a) Rút gọn A
b) Chứng minh A≥0
Bài 2:Cho A= \(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}+\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right).\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)
với x>0; x≠1
a) Rút gọn A
b)Tìm x để A=6