Cho a,b,c là các số thực dương thỏa mãn a+b+c=3. Tìm giá trị nhỏ nhất của biểu thức:
\(P=\dfrac{1}{a\left(b^2+bc+c^2\right)}+\dfrac{1}{b\left(c^2+ca+a^2\right)}+\dfrac{1}{c\left(a^2+ab+b^2\right)}+\dfrac{abc}{ab+bc+ca}\)
Cho các số thực x, y dương thỏa mãn x + \(\dfrac{1}{y}\) \(\le\) 1; Tìm giá trị nhỏ nhất của biểu thức:
P = \(\dfrac{x^2-2xy+2y^2}{x^2+xy}\)
Cho 3 số dương a, b, c thay đổi thỏa mãn: \(a^2+b^2+c^2=3\). Tìm giá trị nhỏ nhất của biểu thức: \(P=2.\left(a+b+c\right)+\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
Cho 3 số dương a, b, c thay đổi thỏa mãn: \(a^2+b^2+c^2=3\). Tìm giá trị nhỏ nhất của biểu thức: \(P=2.\left(a+b+c\right)+\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
1) cho các số thực dương a,b thỏa mãn \(3a+b\le1\). Tìm Min của \(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\)
2) Với hai số thực a,b không âm thỏa mãn \(a^2+b^2=4\). Tìm Max \(M=\dfrac{ab}{a+b+2}\)
3) Cho x,y khác 0 thỏa mãn \(\left(x+y\right)xy=x^2+y^2-xy\). Tìm Max \(A=\dfrac{1}{x^3}+\dfrac{1}{y^3}\)
Ai biết bài này giải hộ mình với
a) Rút gọn biểu thức A=\(\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)
b) Cho x,y,z thỏa mãn: xy+yz+xz=1
Hãy tính giá trị biểu thức:A=\(x\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{\left(1+x^2\right)}}+y\sqrt{\dfrac{\left(1+z^2\right)\left(1+x^2\right)}{\left(1+y^2\right)}}+z\sqrt{\dfrac{\left(1+x^2\right)\left(1+y^2\right)}{\left(1+z^2\right)}}\)Cảm ơn
cho a,b,c là các số dương thỏa a+b+c=1.tìm giá trị nhỏ nhất của biểu thức P=\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(1+36abc\right)\)
cho a,b>0 thỏa mãn \(\left(\sqrt{a}+2\right)\left(\sqrt{b}+2\right)=9\)
Tìm giá trị nhỏ nhất của biểu thức T=\(\dfrac{a^4}{b}+\dfrac{b^4}{a}\)
Cho a,b khác 0 và thỏa mãn \(a\sqrt{2-b^2}+b\sqrt{2-a^2}=2\)
Tìm Giá trị nhỏ nhất của:
P=\(\dfrac{1}{a}+\dfrac{1}{b}-a-b\)