Cho (O; R), đường kính AB, dây cung AC. Các tiếp tuyến với đường tròn tại B và C cắt nhau ở D. Biết \(\widehat{ABC}=30^o\), R=2cm
a) Chứng minh: DO // AC
b) Tính độ dài BD, CD
Cho (O;R) và điểm A nằm ngoài đường tròn (O). Qua A vẽ tiếp tuyến AB tiếp xúc với đường tròn (O) tại B. Vẽ một đường thẳng qua A cắt đường tròn tại hai điểm M và N ( M nằm giữa A và N). Qua M kẻ đường thẳng song song với AB cắt BN tại E. Gọi I là trung điểm của ME. Vẽ dây BQ của đường tròn (O) sao cho BQ đi qua điểm I
a) Chứng minh hai tam giác BMI và tam giác BQM đồng dạng
b)Chứng minh tứ giác QIEN nội tiếp
c) Chứng minh BM.QN=BN.MQ
Cho đường tròn (O;R) và các tiếp tuyến AB, AC cắt nhau tại A nằm ngoài đường tròn (B, C là các tiếp điểm). Gọi H là giao điểm của BC và OA.
a) CMR: OA vuông góc với BC và \(OH.OA=R^2\)
b) Kẻ đường kính BD của đường tròn (O) và kẻ đường thẳng CK vuông góc với BD (K thuộc D). CMR: AO song song với CD và AC.CD=CK.AO
c) Gọi I là giao điểm của AD và CK. CMR: Tam giác BIK và tam giác CHK có diện tích bằng nhau
cho (O;R) từ điểm A nằm ngoài đường tròn (O) kẻ tiếp tuyến AB và AC (B,C là tiếp điểm)
từ điểm m thuộc cung nhỏ BC kẻ tiếp tuyến thứ 3 với đường tròn tiếp tuyến này cắt AB,AC lần lượt tại D và E. OD và OE lần lượt cắt BC tại I và K chưng minh OM,DE và IK đồng quy
cho 2 đường tròn (O; r) và (O' r') cắt nhau tại 2 điểm A, B (r'>r). Tiếp tuyến chung MN tiếp xúc với 2 đường tròn (O) và (O') lần lượt tại M, N (A, M, N nằm trên cùng một nửa mặt phẳng bờ OO'). Đường thẳng MN cắt OO' tại I
a) Chứng minh tam giác IOM đồng dạng với tam giác IO'N
b) gọi C là giao điểm của đường thẳng IA với đường thẳng d, d đi qua O và song sóng với O'A. Chứng minh C nằm trên (O)
c) Chứng minh IA tiếp xúc với đường tròn ngoại tiếp tam giác AMN
Cho 2 đường tròn (O;R) và (O'R') tiếp xúc ngoài ở A. Kẻ tiếp tuyến chung ngoài CD. Kẻ tiếp tuyến chung trong Ax và Ax cắt CD ở I. Gọi giao AC và OI là M, của AD và O'I là N.
a) Góc CAD bằng bao nhiêu?
b) Tứ giác IMAN là hình gì? Vì sao?
c) Tính CD biết R=9 cm, R'=4 cm.
d) Chứng minh CD là tiếp tuyến của đường tròn đường kính OO'.
Từ điểm A nằm ngoài đường tròn (O;R) với OA > 2R, kẻ các tiếp tuyến AB, AC của đường tròn (O) (B, C là các tiếp điểm). Vẽ đường kính BD của đường tròn (O); AD cắt đường tròn (O) tại E (E khác D).
a) Chứng minh: OA BC tại H và 4 điểm A, B, O, C cùng thuộc đường tròn
b) Chứng minh: CD // OA và AH.AO= AE.AD
c) Gọi I là trung điểm của HA. Chứng minh ABI = BDH
Hai đường tròn (O;R) và (O'r) tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung BC, \(B\in\left(O\right),C\in\left(O'\right)\)
a) cho R=3, r=1. tính AB, AC
b) cho AB=19,2 , AC=14,4. tính R,r