Cho góc xOy khác góc bẹt. Trên Ox lấy 3 điểm A, B, C sao cho OA = AB = BC. Từ A, B, C vẽ 3 đường thẳng song song với nhau và cắt tia Oy tại D, E, F. Chứng minh OD = OE = OF
1)Cho tam giác đều ABC, phân giác BD và CE cắt nhau tại O. CMR:
a) BD vuông góc AC và CE vuông góc Ab
b) OA=OB=OC
2)Cho tam giác ABC vuông tại A có góc C=45 độ. Vẽ phân giác AD. Trên tia đổi của tia AD lấy điểm E sao cho AE=BC. Trên tia đối của tia CA lấy điểm F sao co CF=AB
CMR: BE+BF và BE vuông BF
giúp vs
Bài 1: Cho tam giác ABC, D là trung điểm của AB. Đường thẳng qua D và // với BC cắt AC ở E. Đường thẳng qua E và // với AB cắt BC ở F. CMR:
a) AD = EF
b) Tam giác ADE = tam giác EFC
Bài 2: Cho tam giác ABC, tia phân giác của góc C cắt AB ở D. Trên tia đối của tia CA lấy điểm E sao cho CE = CB.
a) CM CD//EB
b) Tia phân giác của góc E cắt đường thẳng CD tại F. Vẽ CK vuông góc với EF tại K. CM CK là tia phân giác của góc ECF
Bài 3: Cho tam giác ABC cân tại A, trên tia AB lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho CE=BD, DE cắt BC tại I. Trên tia đối của tia BC lấy điểm F sao cho BF=CI. CMR:
a) Tam giác BFD = tam giác CIE
b) Tam giác DFI cân
c) I là trung điểm của DE
giúp mình với nhé!
Cho đoạn thẳng AB. O là trung điểm của AB, trên hai nửa mặt phẳng đối nhau bờ AB kẻ 2 tia x và By, sao cho góc BAx = góc ABy. Trên tia Ax lấy hai điểm C và E ( E nằm giữa BD ) sao cho AC = BD ; AE = BF
Chứng minh rằng :
a) OC = OD; OE = OF
b) 3 điểm C;O;D thẳng hàng, 3 điểm E, O , F có thẳng hàng
c) ED = CF
Mấy giáo sư jup Rau ik
Bài 1: Cho ΔABC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME=MA. chứng minh
a/ ΔABM=ΔECM
b/ AB//CE
Bài 2: Cho ΔABC vuông ở A và AB=AC. Gọi K là trung điểm của BC
a/ Chứng minh : ΔAKB=ΔAKC
b/ Chứng minh: AK vuông góc với BC
c/ Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh EC//AK
Bài 3: Cho Δ ABC có AB=AC, M là trung điểm của BC. trên tia đối của tia MA lấy điểm D sao cho AM= MA
a/ Chứng minh ΔABM=ΔDCM
b/ Chứng minh AB//DC
c/ Chứng minh AM vuông góc với BC
d/ Tìm điều kiện của ΔABC để góc ADC bằng 30o
Bài 4: Cho ΔABC vuông tại A có góc B=30o
a/ Tính góc C
b/ Vẽ tia phân giác của góc C cắt cạnh AB tại D
c/ TRên cạnh CB lấy điểm M sao cho CM=CA. Chứng minh ΔACD=ΔMCD
d/ Qua C vẽ đường thẳng xy vuông góc CA. Từ A kẻ đường thẳng song song với CD cắt xy ở K. Chứng minh : AK=CD
e/ Tính góc AKC.
Bài 5: Cho góc nhọn xOy. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. Trên tia Ax lấy điểm C, trên tia By lấy điểm D sao cho AC=Bd
a/ Chứng minh AD=BC
b/ Gọi E là giao điểm AD và BC. Chứng minhΔEAC=ΔEBD
c/ Chứng minh OE là phân giác của góc xOy
Bài : Cho góc nhọn xOy. Trên Ox lấy điểm A, trên Oy lấy điểm B sao cho OA=OB. Từ A đường thẳng vuông góc với Ox, cắt Oy tại E. Từ B kẻ đường thẳng vuông góc với Oy, cắt Ox tại F. AE và BF cắt nhau tại I.
CMR: a)) AE=BF.
b)) ΔAFI=ΔBEI
c)) OI là tia phân giác của góc AOB
Cho đoạn thẳng AB và trung điểm O của đoạn thẳng đó. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ hai tia Ax, By sao cho góc BAx = góc ABy, rồi lấy trên Ax hai điểm C và E ( E nằm giữa A và C ), trên By hai điểm D và F ( F nằm giữa B và D ) sao cho AC = BD, AE = BF
Chứng minh
a, OC = OD, OE = OF
b, Ba điểm C, O, D thẳng hàng, ba điểm E, O, F thẳng hàng
c, ED = CF
2. CHo tam giác ABC cân tại A. trên AB lấy D, trên tia đối của CA lấy E sao cho BD=CE. Đường thẳng qua C song song ED và đường thẳng qua D song song AC cắt nhau tại F. CMR: BC bé hơn FC