cho tam giác ABC nội tiếp đường tròn O,đường tròn K tiếp xúc trong vs đtròn O tại T và tiếp xúc 2 cạnh AB,AC tại E,F chưng minh tâm I đtròn nội tiếp tam giác ABC là trung điểm EF
Cho (o;r) đường kính AB ; H thuộc OA . Kẻ dây CD vuông góc với AB tại H . Vẽ đường tròn (O1) tại M , đường tròn (O2) đường kính BH . Nối AC cắt (O1) tại M , nối BC cắt (O2) tại N , đường thẳng MN cắt (o1) và (o2) tại E , F
a) CM : CMHN là hcn b) CE=CF=CH
c) CM : MN là tiếp tuyến chung 2 đường tròn (o1) , (o2)
Từ điểm A nằm ngoài đường tròn tâm O kẻ hai tiếp tuyến AB và AC( B và C là tiếp điểm). Đường thằng đi qua A cắt (O) tại D và E ( D nằm giữa A và E), kẻ dây cung EN song song với BC, DN cắt BC tại I. Chứng minh rằng BI= CI
Cho đường tròn (O;R) đường kính AB. Điểm H thuộc đoạn OA. Kẻ dây CD vuông góc với AB tại H . Vẽ đường tròn (O1) đường kính AH và đường tròn (O2) đường kính HB. Nói CA cắt đường tròn (O1) tại M,nối BC cắt đường tròn (O2) tại N.Nối MN cắt đường tròn (O;R) tại E và F.
1. Chứng minh CMHN là HCN.
2. Cho AH=4cm,HB=9cm. Tinh MN.
3.C/m: MN là tiếp tuyến chung của 2 đường tròn (O1) va(O2) .
4.C/m: CE=CF=CH.
cho (O) dây AB; M thuộc cung AB lớn. Vẽ (O1) qua M tiếp xúc AB tại A; (O2) qua M tiếp xúc AB tại B.N la giao điểm (O1) và (O2). MN cắt (O) tại P. c/m ANBP là hbh. xác định vị trí M để diện tich ANBP lớn nhất.
cho 2 đg tròn (o1), (o2) cắt nhau tại A,B kéo dài AB về phía B lấy điiểm M kẻ các tiếp tuyến ME ,MF của đường tròn o1 BE BF cắt đg trong o2 ở P,Q gọi I là giap EF PQ cme i là trung điểm PQ
Từ điểm M nằm ngoài đường tròn (O;R) vẽ tiếp tuyến MC,MD với đường tròn (C;D là tiếp tuyến ) .
a, Chứng minh : MO cắt CD
b, Đường thẳng MO cắt đường tròn tại A,B ( A nằm giữa M và O ) và cắt CD tại H.
c, Chứng minh : HA^2 + HB ^2 +CD^2/2 = 4R^2
Cho đường tròn tâm O bán kính R và đường thẳng (d) cắt đường tròn tâm O tại hai điểm C và D (đường thẳng d không đi qua tâm O). Từ điểm S bất kì thuộc tia CD (S nằm ngoài đường tròn tâm O), kẻ hai tiếp tuyến SA và SB với đường tròn tâm O (với A và B là các tiếp điểm). Gọi H là trung điểm của đoạn CD và E là giao điểm của AB với SC. Chứng minh rằng: Khi S di chuyển trên tia CD (S nằm ngoài đường tròn tâm O) thì đường thẳng AB luôn đi qua 1 điểm cố định
Cho (O;R) và điểm A nằm ngoài đường tròn (O). Qua A vẽ tiếp tuyến AB tiếp xúc với đường tròn (O) tại B. Vẽ một đường thẳng qua A cắt đường tròn tại hai điểm M và N ( M nằm giữa A và N). Qua M kẻ đường thẳng song song với AB cắt BN tại E. Gọi I là trung điểm của ME. Vẽ dây BQ của đường tròn (O) sao cho BQ đi qua điểm I
a) Chứng minh hai tam giác BMI và tam giác BQM đồng dạng
b)Chứng minh tứ giác QIEN nội tiếp
c) Chứng minh BM.QN=BN.MQ