Cho hình vuông ABCD cạnh a a) xác định điểm K thỏa mãn vecto KA+ vecto KB+ vecto KC+4vecto KD = vecto 0 b) tìm {M} thỏa mãn : | vecto MA+ vecto MB + vecto MC +4vecto MF| = 2a c) tìm {N} thỏa mãn : |2 vecto NA- vecto NB + vecto NC | = | vecto ND +vecto NC|
cho tam giác ABC
tìm điểm O sao cho : vecto OA+vecto OB+vecto OC= vecto 0
tìm điểm K sao cho : vecto KA+2 vecto KB= vecto CB
tìm điểm M sao cho : vecto MA+ vecto MB+ 2 vecto MC = vecto 0
Cho tam giác ABC vuông tại A có AB=3 góc B=60° .Gọi M là điểm thỏa vecto MA + vecto MB= vecto 0. Tính độ dài vecto BM + vecto BC + vecto BA
***Cho hình bình hành ABCD ,k là một số thực thay đổi. Tìm tập hợp điểm M biết:
a) vecto MA +k vecto MC = k vecto MC
b) vecto MA+ (1-k)vectoMB + k vecto MC = vecto 0
c) |vecto MA + vectoMB| = | vectoMC + vectoMD|
d) |2vectoMA - vectoMB - vectoMC| = | vectoMC + 2vectoMD|
cho tam giác abc tìm m s cho | vecto ma+ vecto mb|= |vecto ma + vecto mc|
Cho ∆ABC với vecto MB= –2 vecto MA, vecto NA+ vecto NC= vecto 0. Gọi k là trung điểm MN.
a) Chứng minh 2vecto AB + 3vecto AC= 12 vecto AK.
b) Với P là điểm tùy ý, gọi Q là điểm thỏa vecto PQ= vecto PA +2vecto PB + vecto PC. Chứng minh đường thẳng PQ luôn đi qua điểm cố định.
Cho tam giác ABC trọng tâm G CMR: vecto MG = 1/3( vecto MA + vecto MB + vecto MC) với M bất kì
🆘🆘🆘GIẢI GIÚP MÌNH VỚI 🆘🆘🆘
Cho ∆ABC với vecto MB= –2 vecto MA, vecto NA+ vecto NC= vecto 0. Gọi k là trung điểm MN.
a) Chứng minh 2vecto AB + 3vecto AC= 12 vecto AK.
b) Với P là điểm tùy ý, gọi Q là điểm thỏa vecto PQ= vecto PA +2vecto PB + vecto PC. Chứng minh đường thẳng PQ luôn đi qua điểm cố định.
giúp mình với các thần đồng !!
Cho G là trọng tâm tam giác ABC. CM:
a) vecto GA + vecto GB + vecto GC= vecto 0
b) vecto MA + vecto MB + vecto MC= 3 vecto MG ( với mọi M)