giúp mình với nhá
cho hình bình hành abcd có tâm o. hãy xác định các điểm i,f,k thỏa mãn đẳng thức :
a) vecto IA+ vecto IB + vecto IC =4 vecto ID
b) 2vecto FA +2 vecto FB = 3 vecto FC - vecto FD
c)4 vecto KA +3 vecto KB +2 vecto KC + vecto KD = vecto 0
Cho ∆ABC với vecto MB= –2 vecto MA, vecto NA+ vecto NC= vecto 0. Gọi k là trung điểm MN.
a) Chứng minh 2vecto AB + 3vecto AC= 12 vecto AK.
b) Với P là điểm tùy ý, gọi Q là điểm thỏa vecto PQ= vecto PA +2vecto PB + vecto PC. Chứng minh đường thẳng PQ luôn đi qua điểm cố định.
🆘🆘🆘GIẢI GIÚP MÌNH VỚI 🆘🆘🆘
Cho ∆ABC với vecto MB= –2 vecto MA, vecto NA+ vecto NC= vecto 0. Gọi k là trung điểm MN.
a) Chứng minh 2vecto AB + 3vecto AC= 12 vecto AK.
b) Với P là điểm tùy ý, gọi Q là điểm thỏa vecto PQ= vecto PA +2vecto PB + vecto PC. Chứng minh đường thẳng PQ luôn đi qua điểm cố định.
cho tam giác ABC
tìm điểm O sao cho : vecto OA+vecto OB+vecto OC= vecto 0
tìm điểm K sao cho : vecto KA+2 vecto KB= vecto CB
tìm điểm M sao cho : vecto MA+ vecto MB+ 2 vecto MC = vecto 0
Cho tam giác ABC vuông tại A có AB=3 góc B=60° .Gọi M là điểm thỏa vecto MA + vecto MB= vecto 0. Tính độ dài vecto BM + vecto BC + vecto BA
***Cho hình bình hành ABCD ,k là một số thực thay đổi. Tìm tập hợp điểm M biết:
a) vecto MA +k vecto MC = k vecto MC
b) vecto MA+ (1-k)vectoMB + k vecto MC = vecto 0
c) |vecto MA + vectoMB| = | vectoMC + vectoMD|
d) |2vectoMA - vectoMB - vectoMC| = | vectoMC + 2vectoMD|
Cho tứ giác ABCD .Gọi M,N,I,J lần lượt là trung điểm của các cạnh AD,BC,AC và BD.Chứng minh rằng: a) vecto AB+DC =2MN b) vecto AB-DC=2IJ c) vecto NA+ND=BA+CD d) vecto MA+IJ=NB
Cho Δ ABC . Trên tia BC lấy điểm D sao cho 3BD = 2BC (3 lần vecto BD = 2 lần vecto BC ) . Gọi E là điểm thỏa mãn : 3EA+EB+2EC = 0 (vecto)
a. Biểu thị vecto AD , AE theo 2 vecto AB , AC
b. Chứng minh A , E , D thẳng hàng và E là trung điểm AD
c. Trên AC lấy F và đặt FA = kAC (k ϵ R , vecto) . Tìm k để B , E , F thẳng hàng