Cho ∆ABC với vecto MB= –2 vecto MA, vecto NA+ vecto NC= vecto 0. Gọi k là trung điểm MN.
a) Chứng minh 2vecto AB + 3vecto AC= 12 vecto AK.
b) Với P là điểm tùy ý, gọi Q là điểm thỏa vecto PQ= vecto PA +2vecto PB + vecto PC. Chứng minh đường thẳng PQ luôn đi qua điểm cố định.
Cho 4 diem a b c d .gọi i và j lan lượt là trung điểm cua ab và cd. Chứng minh vecto ac+bd= vecto ad+bc=2vecto ij
Bài 1. Cho tam giác ABC , gọi M là điểm trên cạnh BC sao cho MC = 2MB
1) Phân tích vecto AM theo vecto AB, vecto AC
2) Gọi D là trung điểm của AC, phân tích vecto MD theo vecto BA, vecto BC
3) Gọi E là trung điểm của BD . Chứng minh A, E, M thẳng hàng
4) Phân tích vecto BC theo vecto BD, vecto AM
Cho Δ ABC . Trên tia BC lấy điểm D sao cho 3BD = 2BC (3 lần vecto BD = 2 lần vecto BC ) . Gọi E là điểm thỏa mãn : 3EA+EB+2EC = 0 (vecto)
a. Biểu thị vecto AD , AE theo 2 vecto AB , AC
b. Chứng minh A , E , D thẳng hàng và E là trung điểm AD
c. Trên AC lấy F và đặt FA = kAC (k ϵ R , vecto) . Tìm k để B , E , F thẳng hàng
Cho hình vuông ABCD cạnh a a) xác định điểm K thỏa mãn vecto KA+ vecto KB+ vecto KC+4vecto KD = vecto 0 b) tìm {M} thỏa mãn : | vecto MA+ vecto MB + vecto MC +4vecto MF| = 2a c) tìm {N} thỏa mãn : |2 vecto NA- vecto NB + vecto NC | = | vecto ND +vecto NC|
Cho tam giác ABC vuông tại A có AB=3 góc B=60° .Gọi M là điểm thỏa vecto MA + vecto MB= vecto 0. Tính độ dài vecto BM + vecto BC + vecto BA
Cho tam giác ABC có trọng tâm G. Gọi E và F là các điểm xác định bởi vecto EA = vecto 2EB, veto 3FA+ veto 2FC= vecto 0. Chứng minh 3 điểm E,F,G thẳng hàng. Giúp em với ạ
Cho tam giác ABC có trung tuyến AM điểm K thuộc AC sao cho AK=1/3 AC a. Phân tích vecto BK vecto BA và vecto BC b. Gọi I là trung điểm của AM. Chứng minh 3 điểm B, I, K thẳng hàng
giúp mình với nhá
cho hình bình hành abcd có tâm o. hãy xác định các điểm i,f,k thỏa mãn đẳng thức :
a) vecto IA+ vecto IB + vecto IC =4 vecto ID
b) 2vecto FA +2 vecto FB = 3 vecto FC - vecto FD
c)4 vecto KA +3 vecto KB +2 vecto KC + vecto KD = vecto 0