a/ P (x) = 5x3 - 3x + 7 - x
= 5x3 + (-3x - x) + 7
= 5x3 -4x + 7
Q (x) = -5x3 + 2x - 3 + 2x - x2 - 2
= -5x3 - x2 + (2x + 2x) + (-3-2)
= -5x3 - x2 + 4x - 5
b/ P (x) = 5x3 - 4x + 7
+ Q (x) = -5x3 - x2 + 4x - 5
m (x) = -x2 + 2
Vậy m (x) = -x2 + 2
P (x) = 5x3 -4x + 7
- Q (x) = 5x3 + x2 -4x + 5
n (x) = 10x3 + x2 -8x + 12
Vậy n (x) = 10x3 + x2 - 8x + 12
a) Ta có :
P(x) = 5x3 - 3x + 7 - x = 5x3 - ( 3x + x) +7
= 5x3 - 4x +7
Q(x) = -5x3 + 2x - 3 +2x -2x2 -2
= -5x3 -2x2 + (2x +2x ) - (3+2 )
= -5x3 -2x2 + 4x - 5
b) m(x) = ( 5x3 - 4x +7 ) + ( -5x3 -2x2 +4x -5 )
= 5x3 - 4x +7 - 5x3 - 2x2 + 4x -5
= ( 5x3 -5x3 ) -2x2 + ( 4x -4x ) + (7 - 5 )
= -2x2 +2
n(x) = ( 5x3 - 4x + 7 ) - ( -5x3 - 2x2 + 4x - 5 )
= 5x3 - 4x + 7 +5x3 +2x2 -4x +5
= ( 5x3 + 5x3 ) + 2x2 - ( 4x + 4x ) + (7 + 5 )
= 10x3 +2x2 - 8x +12
c) m(x) = 0 \(\Rightarrow\) -2x2 +2 = 0 \(\Rightarrow\) 2x2 = 2
\(\Rightarrow\) x2 = 1 \(\Rightarrow\) x = 1 hoặc x = -1