5) Ta có:
a + b + 1 = 111...1 + 444...4 + 1
(2n c/s 1)(n c/s 4)
= 111...1000...0 + 111...1 + 111...1 x 4 + 1
(n c/s 1)(n c/s 0) (n c/s 1) (n c/s 1)
= 111...1 x 1000...0 + 111...1 + 111...1 x 4 + 1
(n c/s 1) (n c/s 0) (n c/s 1) (n c/s 1)
= 111...1 x 1000..05 + 1
(n c/s 1) (n-1 c/s 0)
= 111...1 x 3 x 333...35 + 1
(n c/s 1) (n-1 c/s 3)
= 333...3 x 333...34 + 333...34
(n c/s 3) (n-1 c/s 3)(n-1 c/s 3)
= 333...342 là số chính phương (đpcm)
(n-1 c/s 3)
6) (x - 2)6 = (x - 2)8
=> (x - 2)8 - (x - 2)6 = 0
=> (x - 2)6.[(x - 2)2 - 1] = 0
=> \(\left[\begin{array}{nghiempt}\left(x-2\right)^6=0\\\left(x-2\right)^2-1=0\end{array}\right.\)=> \(\left[\begin{array}{nghiempt}x-2=0\\\left(x-2\right)^2=1\end{array}\right.\)=> \(\left[\begin{array}{nghiempt}x-2=0\\x-2=1\\x-2=-1\end{array}\right.\)=> \(\left[\begin{array}{nghiempt}x=2\\x=3\\x=1\end{array}\right.\)
Vậy \(x\in\left\{1;2;3\right\}\)