Ôn tập: Phân thức đại số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Trung Nguyên

Câu 4. Tìm giá trị của x sao cho các biểu thức A và B sau đây có giá trị bằng nhau

a, A=(x-3) (x+4)-2(3x-2) và B=(x-4)2

b, A=(x+2) (x-2)+3x2 và B=(2x+1)2+2x

c, A=(x-1) (x2+x+1)-2x và B=x(x-1) (x+1)

d, A=(x+1)3-(x-2)3 và B=(3x-1) (3x+1)

Câu 5. Giải các phương trình sau

a, \(\frac{\left(2x+1\right)^2}{5}-\frac{\left(x-1\right)^2}{3}=\frac{7x^2-14x-5}{15}\); b, \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\)

c, \(\frac{\left(x-2\right)^2}{3}-\frac{\left(2x-3\right)\left(2x+3\right)}{8}+\frac{\left(x-4\right)^2}{6}=0\)

Nguyễn Ngọc Lộc
29 tháng 3 2020 lúc 13:26

Bài 5 :

a, Ta có : \(\frac{\left(2x+1\right)^2}{5}-\frac{\left(x-1\right)^2}{3}=\frac{7x^2-14x-5}{15}\)

=> \(\frac{3\left(2x+1\right)^2}{15}-\frac{5\left(x-1\right)^2}{15}=\frac{7x^2-14x-5}{15}\)

=> \(3\left(2x+1\right)^2-5\left(x-1\right)^2=7x^2-14x-5\)

=> \(12x^2+12x+3-5x^2+10x-5-7x^2+14x+5=0\)

=> \(36x+3=0\)

=> \(x=-\frac{1}{12}\)

Vậy phương trình trên có nghiệm là \(S=\left\{-\frac{1}{12}\right\}\)

b, Ta có : \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\)

=> \(\frac{5\left(7x-1\right)}{30}+\frac{60x}{30}=\frac{6\left(16-x\right)}{30}\)

=> \(5\left(7x-1\right)+60x=6\left(16-x\right)\)

=> \(35x-5+60x-96+6x=0\)

=> \(101x-101=0\)

=> \(x=1\)

Vậy phương trình trên có tạp nghiệm là \(S=\left\{1\right\}\)

c, Ta có : \(\frac{\left(x-2\right)^2}{3}-\frac{\left(2x-3\right)\left(2x+3\right)}{8}+\frac{\left(x-4\right)^2}{6}=0\)

=> \(\frac{8\left(x-2\right)^2}{24}-\frac{3\left(2x-3\right)\left(2x+3\right)}{24}+\frac{4\left(x-4\right)^2}{24}=0\)

=> \(8\left(x-2\right)^2-3\left(2x-3\right)\left(2x+3\right)+4\left(x-4\right)^2=0\)

=> \(8\left(x^2-4x+4\right)-3\left(4x^2-9\right)+4\left(x^2-8x+16\right)=0\)

=> \(8x^2-32x+32-12x^2+27+4x^2-32x+64=0\)

=> \(-64x+123=0\)

=> \(x=\frac{123}{64}\)

Vậy phương trình có nghiệm là \(S=\left\{\frac{123}{64}\right\}\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Phạm Trung Nguyên
Xem chi tiết
Phạm Trung Nguyên
Xem chi tiết
Park Lin
Xem chi tiết
Nguyễn Thị Thu Hiền
Xem chi tiết
Phạm Trung Nguyên
Xem chi tiết
Phạm Trung Nguyên
Xem chi tiết
Phạm Trung Nguyên
Xem chi tiết
Vũ Thu Hiền
Xem chi tiết
Nguyễn Thị Thu Hiền
Xem chi tiết