Ôn tập: Phân thức đại số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Park Lin

Bài 1 : giải phương trình sau :

a) 3x-1= 2x+4 b) 5x-2 = 0 c)7x-4=3x+12 d)\(\frac{x-1}{2}+\frac{3x+2}{4}=\frac{x-7}{12}\)

Bài 2 : Thực hiện phép tính :

a) \(\left(\frac{x+1}{x^2-2x+1}+\frac{1}{x-1}\right):\frac{x}{x-1}-\frac{2}{x-1}\)

b) \(\left(x^3-x^2-7x+3\right):\left(x-3\right)\)

c)\(\frac{1}{x+1}+\frac{5}{x-2}-\frac{3x}{\left(x+1\right)\left(x-2\right)}\)

giúp mình với !

Nguyễn Ngọc Lộc
25 tháng 2 2020 lúc 10:45

Bài 1 :

a, Ta có : \(3x-1=2x+4\)

=> \(3x-2x=4+1\)

=> \(x=5\)

Vậy phương trình có tập nghiệm \(S=\left\{5\right\}\)

b, Ta có : \(5x-2=0\)

=> \(5x=2\)

=> \(x=\frac{2}{5}\)

Vậy phương trình có tập nghiệm \(S=\left\{\frac{2}{5}\right\}\)

c, Ta có : \(7x-4=3x+12\)

=> \(7x-3x=12+4\)

=> \(4x=16\)

=> \(x=4\)

Vậy phương trình có tập nghiệm \(S=\left\{4\right\}\)

d, Ta có : \(\frac{x-1}{2}+\frac{3x+2}{4}=\frac{x-7}{12}\)

=> \(\frac{6\left(x-1\right)}{12}+\frac{3\left(3x+2\right)}{12}=\frac{x-7}{12}\)

=> \(6\left(x-1\right)+3\left(3x+2\right)=x-7\)

=> \(6x-6+9x+6=x-7\)

=> \(6x+9x-x=6-7-6\)

=> \(14x=-7\)

=> \(x=-\frac{1}{2}\)

Vậy phương trình có tập nghiệm \(S=\left\{-\frac{1}{2}\right\}\)

Bài 2 :

a, ĐKXĐ : \(\left\{{}\begin{matrix}x^2-2x+1\ne0\\x-1\ne0\end{matrix}\right.\)

=> \(x-1\ne0\)

=> \(x\ne1\)

- Ta có : \(\left(\frac{x+1}{x^2-2x+1}+\frac{1}{x-1}\right):\frac{x}{x-1}-\frac{2}{x-1}\)

= \(\left(\frac{x+1}{\left(x-1\right)^2}+\frac{x-1}{\left(x-1\right)^2}\right):\frac{x}{x-1}-\frac{2}{x-1}\)

= \(\left(\frac{2x}{\left(x-1\right)^2}\right):\frac{x}{x-1}-\frac{2}{x-1}\)

= \(\left(\frac{2x}{\left(x-1\right)^2}\right)\left(\frac{x-1}{x}\right)-\frac{2}{x-1}\)

= \(\frac{x}{x-1}-\frac{2}{x-1}\)

= ​​\(\frac{x-2}{x-1}\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Phạm Trung Nguyên
Xem chi tiết
Nguyễn Thị Thu Hiền
Xem chi tiết
Phạm Trung Nguyên
Xem chi tiết
Vũ Thu Hiền
Xem chi tiết
Phạm Trung Nguyên
Xem chi tiết
Nguyễn Thị Thu Hiền
Xem chi tiết
shang
Xem chi tiết
Hồ Nguyễn Ngọc Trang
Xem chi tiết
Nguyễn Quỳnh Trang
Xem chi tiết