Chương III : Quan hệ giữa các yếu tố trong tam giác, các đường đồng quy của tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyễn trung hiếu

Câu 1:Cho ∆ABC cân tại A,gọi M là trung điểm của BC sao cho BM=MC

a, Chứng minh rằng: ∆ABM=∆ACM

b, Chứng minh rằng:AM BC

c, Từ M,vẽ MKAC tại K,MHAB tại H. Chứng minh rằng:BH=CK

d, Từ B,vẽ BPAC tại P,tia MH và BP cắt nhau tại I.Chứng minh rằng: ∆IBM là ∆cân

e, Chứng minh rằng : BP//MK

Kinomoto Sakura
12 tháng 5 2021 lúc 15:46

a) Xét ΔABM và ΔACM có:
AB=AC ( ΔABC cân tại A)
Cạnh AM chung  

MB=MC (gt)

⇒ ΔABM=ΔACM (c.c.c)

Vậy ΔABM=ΔACM
b) Vì ΔABM=ΔACM (cmt)
⇒ ∠AMB=∠AMC (2 góc tương ứng)
Ta có:∠AMB+∠AMC=180 ( 2 góc kề bù)
⇒ AMB=AMC=1800/2=900
⇒ AM⊥BC

Vậy AM⊥BC

c) Vì MK⊥AC (gt)

⇒ ∠MKA=∠MKC=900

Vì MH⊥AB (gt)

⇒ ∠MHA=∠MHB=900

Xét ΔHBM và ΔKCM có:

∠MHB∠=MKC=900

MB=MC (gt)

∠HMB∠=KMC (đối đỉnh)

⇒ ΔHBM = ΔKCM (cạnh huyền - góc nhọn)

⇒ BH=CK (2 cạnh tương ứng)

Vậy BH=CK

Mik mỏi tay lám rùi bạn tự làm phần sau nhé

 

nguyễn an phát
12 tháng 5 2021 lúc 16:21

xét ΔABM và ΔACM có:

AB=AC(ΔABC cân tại A)

\(\widehat{ABM}=\widehat{ACM}\)(ΔABC cân tại A)

BM=CM(M là trung điểm của BC)

⇒ΔABM=ΔACM(c-g-c)

\(\widehat{AMB}=\widehat{AMC}\)(2 góc tương ứng)(1)

Mà \(\widehat{AMB}+\widehat{AMC}=180^o\)(2 góc kề bù)(2)

từ (1)và(2)⇒\(\widehat{ABM}=\widehat{ACM}=\dfrac{180^o}{2}=90^o\)

hay AM⊥BC(đ.p.ch/m)

xét 2 tam giác vuông HBM và KCM có

MC=MB(M là trung điểm của BC)

\(\widehat{HBM}=\widehat{KCM}\)(ΔABC cân tại A)

⇒ΔHBM=ΔKCM(c.huyền.g.nhọn)

⇒BH=CK(2 cạnh tương ứng)

vì BP⊥AC và MK⊥AC⇒BP//MK

vì ΔHBM=ΔKCM nên 

\(\widehat{HMB}=\widehat{KMC}\)(2 góc tương ứng)

Mà \(\widehat{KMC}=\widehat{PBM}\)(2 góc đồng vị)

⇒ΔIBM là tam giác cân(đ.p.ch/m)

vì BP⊥AC và MK⊥AC⇒BP//MK(đ.p.ch/m)


Các câu hỏi tương tự
Phát HC
Xem chi tiết
Đạt Bênh
Xem chi tiết
Lò Tôn Gaming
Xem chi tiết
Thanh Do
Xem chi tiết
Lò Tôn Gaming
Xem chi tiết
Anh Minh
Xem chi tiết
Vũ Đức Anh
Xem chi tiết
Ha Tran
Xem chi tiết
Võ Đặng Quang Minh
Xem chi tiết