\(P=\dfrac{x^2}{x^4+x^2+1}=\dfrac{1}{x^2+1+\dfrac{1}{x^2}}\)
Áp dụng BĐT cauchy \(x^2+\dfrac{1}{x^2}\ge2\)
do đó \(P\le\dfrac{1}{3}\)
dấu = xảy ra: x=1hoặc x=-1
x= 0 => P = 0
xét x khác 0
\(\dfrac{1}{p}=\dfrac{x^4+x^2+1}{x^2}=x^2+\dfrac{1}{x^2}+1=\left(x^2-2+\dfrac{1}{x^2}\right)+3\)
\(\dfrac{1}{P}=\left(x-\dfrac{1}{x}\right)^2+3\ge3\) đẳng thức khi x=1 hoặc -1
\(\Rightarrow\dfrac{1}{P}\ge3\Rightarrow3P\le1\Rightarrow P\le\dfrac{1}{3}\)
Pmax =1/3 khi x=+-1