Ta có:
\(\dfrac{x-1}{x^2-x+1}-\dfrac{x+1}{x^2+x+1}=\dfrac{10}{x\left(x^4+x^2+1\right)}\)
<=> \(\dfrac{\left(x-1\right)\left(x^2+x+1\right)-\left(x+1\right)\left(x^2-x+1\right)}{\left(x^2+x+1\right)\left(x^2-x+1\right)}=\dfrac{10}{x\left(x^4+x^2+1\right)}\)
<=> \(\dfrac{x^3-1-x^3-1}{x^4+x^2+1}=\dfrac{10}{x\left(x^4+x^2+1\right)}\)
<=> \(\dfrac{-2}{x^4+x^2+1}=\dfrac{10}{x\left(x^4+x^2+1\right)}\)
<=> \(\dfrac{-2x}{x\left(x^4+x^2+1\right)}=\dfrac{10}{x\left(x^4+x^2+1\right)}\)
=> _ 2x = 10
<=> x =-5
Vậy x = -5