tìm GTNN của biểu thức:
P = \(\left[{}\left(\frac{-1}{3}\right)^2}x^3+\left(2x^2\right)^2+\frac{1}{2}]-\left[{}x\left(\frac{1}{3}x\right)^2+\begin{matrix}3\\2^3\end{matrix}\right.+x^4]+\left(y-2013\right)^2\)
Bài 1: Cho đa thức g(x) =\(\left\{{}\begin{matrix}2x-1;x\ge\frac{1}{2}\\-\left(2x-1\right);x< \frac{1}{2}\end{matrix}\right.\)Tìm giá trị nhỏ nhất của biểu thức M = \(\left|5x^2+5\right|+g\left(x\right)+2004-5x^2\)
Tìm y biết:
\(\left\{\begin{matrix}x\times\left(x-y+z\right)=5\\y\times\left(y-z-x\right)=24\\z\times\left(z+x-y\right)=7\end{matrix}\right.\)
Bài 2: Về dồ thị hàm số :
a) \(y=\left\{{}\begin{matrix}2xvớix\ge0\\xvớix\le0\end{matrix}\right.\)
b) y=\(\left\{{}\begin{matrix}2xvới\ge0\\-\dfrac{1}{2}.xvới< 0\end{matrix}\right.\)
Cho \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
CMR \(\left[{}\begin{matrix}\frac{a}{b}=\frac{c}{d}\\\frac{a}{b}=\frac{d}{c}\end{matrix}\right.\)
Tìm các số tự nhiên x;y;z thỏa mãn:
\(\left\{{}\begin{matrix}x^3+3x^2+5=5^y\\x+3=5^z\end{matrix}\right.\)
Cho: \(a_1;a_2;a_3;a_4\ne0\) thỏa mãn \(\left\{{}\begin{matrix}\left(a_2\right)^2=a_1\cdot a_3\\\left(a_3\right)^2=a_2\cdot a_4\end{matrix}\right.\)
CMR: \(\frac{a_1}{a_4}=\frac{\left(a_1\right)^3+\left(a_2\right)^3+\left(a_3\right)^3}{\left(a_2\right)^3+\left(a_3\right)^3+\left(a_4\right)^3}\)
Bài 1: Cho △ABC, D là trung điểm của AB, E là trung điểm của AC. Trên tia đối của tia ED, lấy F sao cho EF = ED.
a) CMR: △AED = △CEF
b) CMR: AB // CF
c) CMR: \(\left\{{}\begin{matrix}DE\text{//}BC\\DE=\frac{1}{2}BC\end{matrix}\right.\)
Bài 2: Cho △ABC, qua A kẻ đường thẳng xy // BC. Từ điểm M nằm trên tia BC, vẽ các đường thẳng song song với AB và song song với AC cắt xy tại D ; E.
a) CMR: △ABC = △MDE
b) CMR: AM ; BD ; CE đồng quy.
Bài 3: Tìm x ; y biết:
a) \(\frac{5x-1}{3}=\frac{7y-6}{5}=\frac{5x+7y-7}{4x}\)
b) \(42-3\left|y-3\right|=4\left(2012-x\right)^4\left(ĐK:x;y\in Z\right)\)
c) \(x-2xy+y=0\left(ĐK:x;y\in Z\right)\)
1)Giải hệ phương trình
\(\left\{{}\begin{matrix}\sqrt{\dfrac{4x}{5y}}=\sqrt{x+y}-\sqrt{x-y}\\\sqrt{\dfrac{5y}{x}}=\sqrt{x+y}+\sqrt{x-y}\end{matrix}\right.\)
2) Tìm MIN MAX
\(P=\dfrac{x}{2+yz}+\dfrac{y}{2+zx}+\dfrac{z}{2+xy}\)