Bài 1: xem lại đề
Bài 2:
\(\left(10^{12}+25\right)^2-\left(10^{12}-25\right)^2=10^n\)
\(\Rightarrow\left(10^{12}+25-10^{12}+25\right)\left(10^{12}+25+10^{12}-25\right)=10^n\)
\(\Leftrightarrow50.2.10^{12}=10^n\)
\(\Leftrightarrow10^{14}=10^n\Rightarrow n=14\)
Vậy n = 14
1. T thấy nó có j đó sai sai ( K giải được )
2. \(\left(10^{12}+25\right)^2-\left(10^{12}-25\right)^2\)
\(=\left[\left(10^{12}+25\right)+\left(10^{12}-25\right)\right]\left[\left(10^{12}+25\right)-10^2+25\right]\)
\(=2.10^{12}.50=10^{14}\)
Vậy \(10^n=10^{14}\Rightarrow n=14\)