Ta có hình sau :
Chứng minh :
a) Vì △ABC cân ( AB = AC ) ⇒ △ABC cân tại A
⇒ \(\widehat{ABC}=\widehat{ACB}\left(\text{t/c t/g cân}\right)\)
Xét △BEM vuông tại E và △CFM vuông tại F có :
BM = MC ( gt )
\(\widehat{ABC}=\widehat{ACB}\left(cmt\right)\)
⇒ △BEM = △CFM ( cạnh huyền - góc nhọn )
⇒ EM = FM ( tương ứng )
b)Nối A với M
Xét △AME vuông tại E và △AMF vuông tại F có:
AM - cạnh chung
EM = FM ( cmt )
⇒ △AME = △AMF (cạnh huyền - cạnh góc vuông )
⇒ AE = AF ( tương ứng )
c) Có △AME = △AMF ( cmt )
⇒ \(\widehat{AME}=\widehat{AMF}\) ( tương ứng )
⇒ AM là tia phân giác của \(\widehat{EMF}\)